
Aldor User Guide

by Aldor.org

Aldor User Guide
c©2000 The Numerical Algorithms Group Limited. c©2002 Aldor.org.

All rights reserved. No part of this Manual may be reproduced, transcribed, stored in
a retrieval system, translated into any language or computer language or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the copyright owner.

The copyright owner gives no warranties and makes no representations about the con-
tents of this Manual and specifically disclaims any implied warranties of merchantabil-
ity or fitness for any purpose.

The copyright owner reserves the right to revise this Manual and to make changes
from time to time in its contents without notifying any person of such revisions or
changes.

Substantial portions of this manual have been published earlier in the vol-
ume “Axiom Library Compiler User Guide,” The Numerical Algorithms
Group 1994, ISBN 1-85206-106-5.
Aldor was originally developed, under the working name of A], by the Research Di-
vision of International Business Machines Corporation, Yorktown Heights, New York,
USA.

Aldor, AXIOM and the AXIOM logo are trademarks of NAG.
NAG is a registered trademark of the Numerical Algorithms Group Limited. All other
trademarks are acknowledged.

Acknowledgements

Aldor was originally developed at IBM Yorktown Heights, in various
versions from 1985 to 1994, as an extension language for the AXIOM
computer algebra system. Aldor was further refined and extended at
the Numerical Algorithms Group at Oxford, before the formation of Al-
dor.org in 2002.
The principal designer of the language was Stephen Watt, now Profes-
sor of Computer Science at the University of Western Ontario. Many
people have worked on the compiler, its documentation and the associ-
ated libraries, including Gerald Baumgartner, Dave Bayer, Peter Broad-
bery, Manuel Bronstein, Ronnie Brown, Florian Bundshuh, Bill Burge,
Yannis Chicha, Robert Corless, George Corliss, Tim Daly, James Dav-
enport, Mike Dewar, Samuel Dooley, Martin Dunstan, Robert Edwards,
Marc Gaetano, Patrizia Gianni, Teresa Gomez-Diaz, Stephen Gortler,
Johannes Grabmeier, Vilya Harvey, Ralf Hemmecke, Pietro Iglio, Tony
Kennedy, Larry Lambe, Ian Meikle, Michael Monagan, Marc Moreno-
Maza, Scott Morrison, Bill Naylor, Mike Richardson, Simon Robinson,
Philip Santas, Jonathan Steinback, Robert Sutor, Themos Tsikas, Barry
Trager, Mike West, and Knut Wolf.
Thanks also to the management at IBM and NAG, in particular Brian
Ford, Steve Hague, Shmuel Winorgrad, Bill Pulleyblank, Marshall Schor
and Richard Jenks for their cooperation in bringing Aldor out of the
laboratory and into the real world.

i

Preface

Aldor is a programming language that attempts to achieve power through
the uniform treatment of all values. Rather than build a language by
adding features, we have tried instead to build a language by removing
restrictions. While the design of Aldor emphasizes generality and com-
posibility, it also emphasizes efficiency. Usually these objectives seem to
pull in different directions. An achievement of Aldor’s implementation is
its ability to attain both simultaneously.
Aldor is not at its foundation an object-oriented language. Instead, ob-
ject semantics are reconstructed from the primitive treatment of func-
tions and types as first-class values. Similarly, aspect-oriented program-
ming arises as a natural use of general language primitives. While the ini-
tial rôle of Aldor was to replace the compiler component of the computer
algebra system AXIOM, Aldor is not a reimplentation of the AXIOM
programming language. Rather, Aldor reconstructs the essential aspects
of the AXIOM programming language from more primitive notions.
Aldor has been, over the period 1995-2001, available from the Numerical
Algorithms Group (NAG) as part of the commercial AXIOM system.
Over this period, Aldor’s users began using it more and more outside of
this original context, to the point where now most Aldor code is unrelated
to AXIOM.
It is now appropriate that Aldor have its own means of distribution for
those who wish to use it in a general context, and Aldor.org has been
formed for this purpose. The Numerical Algorithms Group has graciously
consented to allow free distribution of Aldor this way.
Bringing Aldor from a gleam in the mind’s eye to a concrete compiler has
been a substantial task. Considerable program analysis and optimiza-
tion is required to reduce high-level source programs to efficient machine
code. For the current release, the source of the compiler is approximately
135,000 lines of code, not including the run-time system, base library or

iii

other associated software.
Here we have described Aldor 1.0, the first release of Aldor independent
of AXIOM. Those who have used Aldor earlier will note that the present
document has been adapted to refer to a new library, libaldor. This
library has been used as there is now a considerable body of Aldor code
based upon it. Manuel Bronstein and Marc Moreno Maza are to be
thanked for having invested considerable efforts in its development. Marc
Moreno Maza and Yannis Chicha have updated all the examples in this
document to work with libaldor.
Numerous individuals have contributed to Aldor over its development at
IBM Research, the Numerical Algorithms Group, and elsewhere. These
contributors should be listed in the acknowledgements section of this
document. Particular thanks are due to Martin Dunstan who served as
Aldor’s steward at the Numerical Algorithms Group. It has been a true
pleasure to work with such a collegial and insightful group of people.
London, Ontario SMW
January, 2002

iv

Summary Contents

I A brief overview of Aldor 1

1 Introduction . 3
2 Some simple programs . 9

II The Aldor programming language 19

3 Language orientation . 21
4 Basic syntax . 25
5 Expressions . 37
6 Functions . 61
7 Types . 73
8 Name spaces . 99
9 Generators . 113
10 Post facto extensions . 119
11 Exceptions . 123
12 Generic tie-ins . 129
13 Source macros . 133
14 Language-defined types . 137
15 Standard interfaces . 151

v

III The Aldor compiler 157

16 Understanding messages . 159
17 Separate compilation . 173
18 Using Aldor interactively . 177
19 Using Aldor with C . 191
20 Using Aldor with Fortran-77 . 197

IV Sample Programs 205

21 Sample programs . 207

V Reference 237

22 Formal syntax . 239
23 Command line options . 251
24 The unicl driver . 263
25 Compiler messages . 269
Index . 283

vi

Contents

I A brief overview of Aldor 1

1 Introduction 3
1.1 What is Aldor? . 3
1.2 Compiling and running a single file . 4
1.3 This guide . 6
1.4 Reporting problems . 7

2 Some simple programs 9
2.1 Doubling integers . 9
2.2 Square roots . 10
2.3 A loop and output . 11
2.4 Forming a type . 13
2.5 Continuing ... 17

II The Aldor programming language 19

3 Language orientation 21
3.1 Traditional and non-traditional aspects . 21
3.2 Expressions and evaluation . 22
3.3 Functions . 23
3.4 Domains . 23
3.5 Compilation . 23
3.6 Libraries . 24

4 Basic syntax 25
4.1 Syntax components . 25

vii

4.2 Escape character . 26
4.3 Keywords . 26
4.4 Names: identifiers and operators . 27
4.5 Comments and descriptions . 28
4.6 Application syntax . 30
4.7 Grouping . 31
4.8 Piles . 34

5 Expressions 37
5.1 Names . 37
5.2 Literals . 38
5.3 Definitions . 40
5.4 Assignments . 41
5.5 Functions . 42
5.6 Function calls . 42
5.7 Imperatives . 43
5.8 Multiple values . 43
5.9 Sequences . 44
5.10 Exits . 45
5.11 If . 47
5.12 Select . 48
5.13 Logical expressions . 48
5.14 Loops . 50
5.15 Generate expressions . 57
5.16 Collections . 58
5.17 General branching . 59
5.18 Never . 60

6 Functions 61
6.1 Function definition . 61
6.2 Function application . 63
6.3 Keyword arguments . 64
6.4 Default arguments . 65
6.5 Function expressions . 67
6.6 Curried functions . 69

7 Types 73
7.1 Why types? . 73
7.2 Type expressions . 75
7.3 Type context . 75
7.4 Dependent types . 77
7.5 Subtypes . 80
7.6 Type conversion . 82
7.7 Type satisfaction . 83

viii

7.8 Domains . 84
7.9 Categories . 90

8 Name spaces 99
8.1 Scopes . 99
8.2 Constants . 101
8.3 Disambiguators . 101
8.4 Import from . 102
8.5 Inline from . 103
8.6 Variables . 103
8.7 Functions . 104
8.8 Where . 105
8.9 For iterators . 105
8.10 Add . 105
8.11 With . 106
8.12 Application . 107
8.13 Declarations . 108
8.14 Fluid variables . 110

9 Generators 113
9.1 Using generators in loops . 114
9.2 Using generators via functions . 115
9.3 Creating generators . 116

10 Post facto extensions 119
10.1 Extending types . 120
10.2 Extending functions . 121
10.3 Extending the base Aldor library . 122

11 Exceptions 123
11.1 Introduction . 123
11.2 Throwing Exceptions . 124
11.3 Catching Exceptions . 124
11.4 Specifying Exceptions . 125
11.5 Defining Exceptions . 126

12 Generic tie-ins 129
12.1 Literals . 129
12.2 Program-defined tests . 130
12.3 Generator . 130
12.4 Apply . 131
12.5 Set! . 131
12.6 Bracket . 132

ix

12.7 Coerce . 132

13 Source macros 133
13.1 Macro definition . 133
13.2 Macro expansion . 134
13.3 Examples . 134
13.4 Points of style . 135

14 Language-defined types 137
14.1 Type . 138
14.2 (S1,..,Sn)->(T1,..,Tm) . 138
14.3 Tuple T . 138
14.4 Cross(T1,...,Tn) . 139
14.5 Enumeration(x1,...,xn) . 139
14.6 Record(T1,...,Tn) . 140
14.7 TrailingArray((U1,...,Un),(V1,...,Vm)) . 143
14.8 Union(T1,...,Tn) . 144
14.9 Category . 145
14.10 Join(C1,...,Cn) . 145
14.11 Boolean . 146
14.12 Literal . 146
14.13 Generator T . 146
14.14 Exit . 146
14.15 Foreign I . 147
14.16 Machine . 148
14.17 Ref T . 149
14.18 Magic Types . 150

15 Standard interfaces 151
15.1 The machine interface . 151
15.2 Standard libraries . 156

III The Aldor compiler 157

16 Understanding messages 159
16.1 Aldor error messages . 159
16.2 Example showing Aldor messages . 160
16.3 Some common error messages . 162
16.4 Common pitfalls . 164
16.5 Controlling compiler messages . 166
16.6 Interactive error investigation . 167
16.7 Selecting error messages . 170

x

16.8 Error messages and macros . 170
16.9 Error messages and GNU Emacs . 171
16.10 Using an alternative message database . 171

17 Separate compilation 173
17.1 Multiple files . 173
17.2 Libraries . 174
17.3 Source code references to libraries . 175
17.4 Importing from compiled libraries . 175

18 Using Aldor interactively 177
18.1 How to use the interpreter . 177
18.2 Directives for the interactive mode . 180
18.3 Using the interactive mode . 184

19 Using Aldor with C 191
19.1 Using C code from Aldor . 191
19.2 Using Aldor code from C . 193
19.3 Data correspondence . 194

20 Using Aldor with Fortran-77 197
20.1 Basics . 197
20.2 Simple Example . 198
20.3 Data Correspondence . 199
20.4 Calling Aldor Routines from Fortran . 201
20.5 Platform-dependent details . 202
20.6 Larger Examples . 202

IV Sample Programs 205

21 Sample programs 207
21.1 Hello . 208
21.2 Factorial . 209
21.3 Greetings . 210
21.4 Cycle . 211
21.5 Generators . 213
21.6 Symbol . 215
21.7 Stack . 217
21.8 Recursive structures . 220
21.9 Swap . 222
21.10 Objects . 223
21.11 Mandel . 227

xi

21.12 Integers mod n . 228
21.13 Extensions . 230
21.14 Text input . 231
21.15 Quanc8 . 233

V Reference 237

22 Formal syntax 239
22.1 Source . 239
22.2 Lexical structure . 241
22.3 Layout . 244
22.4 Grammar . 245

23 Command line options 251
23.1 File types . 251
23.2 General options . 252
23.3 Help options . 253
23.4 Argument gathering options . 254
23.5 Directories and libraries options . 254
23.6 Generated file options . 254
23.7 Execution options . 255
23.8 Optimisation options . 255
23.9 Debug options . 257
23.10 C code generation options . 257
23.11 Lisp code generation options . 258
23.12 Message options . 258
23.13 Developer options . 260
23.14 Environment variables . 261

24 The unicl driver 263

25 Compiler messages 269

Index 283

xii

Figures

1.1 An Aldor program. 5

2.1 Simple program 1 . 9
2.2 Simple program 2 . 10
2.3 Simple program 3 . 11
2.4 Simple program 4 — Skeleton . 13
2.5 Simple program 4 — Details . 14

4.1 Keyword and operator precedence . 33

10.1 Post facto extension of the Base Aldor library. 122

16.1 “error0.as” — A program containing mistakes. 161
16.2 Error messages for “error0.as”. 161
16.3 “error1.as” – A program containing fewer mistakes. 161
16.4 Error messages for “error1.as”. 161
16.5 “error2.as” – A program which compiles. 161
16.6 Interactive Error Investigation . 168

17.1 A program consisting of two files. 174

19.1 Aldor code using a C function. 192
19.2 C code using an Aldor function. 192

xiii

PART I

A brief overview of Aldor

CHAPTER 1

Introduction

1.1
What is
Aldor?

The original motivation for Aldor came from the field of computer alge-
bra: to provide an improved extension language for the AXIOM system.

The desire to model the extremely rich relationships among mathemat-
ical structures has driven the design of Aldor in a somewhat different
direction than that of other contemporary programming languages. Al-
dor places more emphasis on uniform handling of functions and types,
and less emphasis on a particular object model. Aldor is an acronym,
standing for A Language for Describing Objects and Relationships.
The primary considerations in the formulation of Aldor have been gener-
ality, composibility and efficiency. The Aldor language has been specif-
ically designed to admit a number of important optimizations, allowing
compilation to machine code whose efficiency is frequently comparable
to that produced by a good C or Fortran compiler.
Aldor is unusual among compiled programming languages, in that types
and functions are first class: that is, both types and functions may be
constructed dynamically and manipulated in the same way as any other
values. This provides a natural foundation for both object-oriented and
functional programming styles, and leads to programs in which indepen-
dently developed components may be combined in quite powerful ways.
Two novel features of Aldor are dependent types, which allow static check-
ing of dynamic objects, and post facto type extensions, which allow com-
plex libraries to be separated into decoupled components.
The Aldor compiler described in this Guide can produce:
• stand-alone executable programs,
• object libraries in native operating system formats,

3

• portable byte code libraries,
• C source.

The object libraries produced by the Aldor compiler can be linked with
one another, or with C or Fortran code, to form application programs.
The byte code libraries can be interpreted, and are used by the compiler
for inter-file optimization.
The Aldor distribution includes:
• an optimising compiler for the Aldor language,
• an interpreted, interactive environment for the same language,
• libraries providing data structures and mathematical abstractions,
• library bindings for standard tools including the NAG Fortran Li-

brary,
• sample programs for symbolics, numerics and graphics.

The Aldor compiler has been designed for portability and runs in many
different environments. Code generated by Aldor will run on 16, 32 and
64-bit architectures. For an up-to-date list of available implementations,
please visit the official Aldor website: http://www.aldor.org.

1.2
Compiling
and
running a
single file

The first thing many people want to do is compile and run a simple test
file. This section shows how to do this.
We start with an Aldor source file, “sieve.as”, containing the simple
program shown in Figure 1.2.
To compile this file and run the resulting executable program, use the
following commands:

% aldor -Fx -laldor sieve.as
% ./sieve

There are 4 primes <= 10
There are 25 primes <= 100
There are 168 primes <= 1000
There are 1229 primes <= 10000
There are 9592 primes <= 100000
There are 78498 primes <= 1000000

In this example “% ” is the operating system command line prompt and
should not be typed. On most platforms the command to run the Aldor
compiler is “aldor”.
The “aldor” command takes the source file “sieve.as” and produces a
file of machine code which can perform the computation. The executable
program is named according to the operating system’s usual conventions:
for instance, “sieve” on Unix, or “sieve.exe” on Windows. Once com-
piled, the new program can be used in the same way as other executable
programs for the given operating system.

4 · Introduction

http://www.aldor.org

--
-- sieve.as: A prime number sieve to count primes <= n.
--
include "aldor"
include "aldorio"

import from Boolean, MachineInteger;

sieve(n: MachineInteger): MachineInteger == {
isprime: PrimitiveArray Boolean := new(n, true);

np := 0;
for p in 2..n | isprime p repeat {

np := np + 1;
for i in 2*p..n by p repeat isprime i := false;

}
np

}

for i in 1..6 repeat {
n := 10^i;
stdout << "There are " << sieve n << " primes <= " << n;
stdout << newline;

}

Figure 1.1: An Aldor program.

Command line options control the behaviour of the compiler. For ex-
ample, the option “-Fx” in the previous example directs the compiler to
produce an executable file. Also, the option “-laldor” directs the linker
to compile the file using “libaldor.a”.
There are many available command line options, regulating different as-
pects of the compiler’s actions. They allow you to control the details of
what the compiler actually does. Here we point out a few of the most
important options — the rest are described in detail in chapter 23.
Keep in mind that you do not need to remember very much. The only op-
tion you really need to know is “-help”, which gives help. The command
is:
% aldor -help

Another thing to keep in mind is that you can make your programs run
much faster by asking the compiler to optimize them. The “-O” option
tells the compiler to do this:
% aldor -O -Fx -laldor sieve.as

Depending on the way in which Aldor has been installed on your com-
puter, you may need to set some system-specific variable or macro so
that the compiler can find its libraries. The value for this will depend on
where Aldor is installed. For example, on one of our local Unix systems,
this is achieved by setting the “environment variable” “ALDORROOT” to

1.2. Compiling and running a single file · 5

/usr/local/aldor

To be able to use Aldor on this particular system, one might put the
following commands in a (Bourne or Korn shell) initialization file:

ALDORROOT=/usr/local/aldor
PATH=$ALDORROOT/bin:$PATH
export ALDORROOT
export PATH

Please refer to your system administrator for details of the corresponding
setup on your particular computer system.

1.3
This guide

This guide describes the Aldor programming language, a compiler and
an interpreter, and other related software.
Part I: The first two chapters provide a quick, informal introduction to
Aldor.

Chapter 1 provides an introduction and indicates how to compile and
run simple programs. It gives a very brief description of what Aldor
is and what the compiler can do. Section 1.4 on page 7 explains
how to report problems.

Chapter 2 discusses a number of (mainly) very simple programs.

Part II: The next chapters provide a guide to the Aldor programming
language.

Chapters 3 to 15 present in detail the various aspects of the language
and provide a number of illustrative examples.

Other chapters in this Guide can also be useful in learning about the
language. Additional programming examples are discussed in chapter 21.
The formal language syntax is given in chapter 22.
Part III: The next five chapters serve as a guide to the Aldor compiler
and related software.

Chapter 16 explains how to interpret and control messages from the
compiler.

Chapter 17 describes how to build an Aldor program from several sep-
arately compiled files.

Chapter 18 shows how to use the Aldor compiler interactively, to com-
pile and evaluate a line of code at a time.

Chapter 19 shows how to write Aldor programs which call C programs
and vice versa.

6 · Introduction

Chapter 20 shows how to write Aldor programs which call Fortran pro-
grams and vice versa.

Part IV: The next chapter provides some examples to help learn the
language.

Chapter 21 provides a number of detailed sample programs. This in-
cludes examples which range from trivial half-page programs to
complete applications. These provide concrete illustrations of how
to use the various aspects of the programming language.

Part V: The remaining chapters provide reference material, and are not
intended to be read sequentially.

Chapter 22 is a formal description of the language syntax.
Chapter 23 provides a detailed description of the “aldor” command.

It describes the types of files, all the options, and the environment
variables understood by the compiler.

Chapter 24 discusses the use of the back-end compiler and linker driver
unicl.

Chapter 25 lists all the messages which the compiler can produce. The
names of the messages are also listed so you can turn off specific
messages if you wish.

1.4
Reporting
problems

If you discover an error in the Aldor compiler, libraries, or companion
software we want to know about it so we can fix it.
When reporting a problem, please supply the precise compiler version and
have a file that demonstrates the problem. To determine your compiler
version, use the “-v” option to cause the Aldor compiler to operate
verbosely. The first output line will contain the compiler version. For
example,

% aldor -v file.as
Aldor version 1.0.0 for LINUX(glibc2.2)

ld in sc sy li pa ma ab ck sb ti gf of pb pl pc po mi
Time 0.1 s 0 6 0 0 0 0 0 0 0 0 94 0 0 0 0 0 0 0 %
Alloc 2523 K 0 .3 .3 3 .2 .2 .2 .1 0 .2 93 1 .2 1 0 .0 .0 .0 %
Free 924 K 0 .1 .1 .0 1 .0 .3 .1 0 .1 92 1 1 4 0 .0 0 2 %
GC 313 K 0 0 0 0 0 0 0 0 0 0100 0 0 0 0 0 0 0 %

Source 90 lines, 33750 lines per minute
Lib 6533 bytes, 2323syme 1241foam 36fsyme 1080name 101kind 1034file 266lazy 246type 2inl 32twins 2ext 2doc 9id 3macros
Store 2280 K pool, 2523K alloc - 924K free - 313K gc = 1286K final

There are two ways to report a problem:

1.4. Reporting problems · 7

• (recommended) Use the aldorbug tool supplied with any Aldor dis-
tribution to send a description of the problem and all the necessary
files to reproduce it.

or
• Send an email with a description of the problem and all the neces-

sary files to reproduce it to bug-report@aldor.org.

8 · Introduction

CHAPTER 2

Some simple programs

Perhaps the easiest way to get a feeling for a programming language is
to read a few programs. This chapter presents simple programs and uses
them as a departure point to discuss some of the basic ideas of Aldor.
Two main options are available to readers after completing this chapter.
Those who prefer a structured approach may choose to progress through
the development in part II. Those preferring to learn by example may
want to skip ahead to chapter 21, where they will find extended exam-
ples of more advanced programming techniques in the form of further
annotated programs, and refer to part II only as necessary.

2.1
Doubling
integers

#include "aldor"

double(n: AldorInteger): AldorInteger == n + n

Figure 2.1: Simple program 1

The first program is one which doubles integers. This program illustrates
a number of things:

1. The Aldor language is itself almost empty. This allows libraries
to define their own environments all the way down to such basic
questions such as what an integer ought to be. Therefore, almost
all programs begin with an “#include” line to establish a basic
context. The “#include” line in this example provides a con-
text in which “Integer” has a specific meaning, provided by the
stand-alone libaldor library. Actually the identifier “Integer” is
a convenient “macro” (see chapter 13) for “AldorInteger”. Please
refer to the libaldor library documentation for more details about

9

“Integer” and “AldorInteger”.
2. The symbol “==” indicates a definition — in this case a definition

of a function named “double”.
3. The function has two declarations using the syntax “: Integer”.

Names indicating values (variables, parameters, etc.) may each
contain values of only a specific type. The first declaration in this
program states that the parameter n must be an Integer. The sec-
ond asserts that the result of the function will also be an Integer.
(The type of the function itself is represented as “Integer ->
Integer”; a name and type together are called a signature, as
in “double: Integer -> Integer”.)

4. The declarations cause the exports from the type Integer to be
visible. Typically, a type exports special values (such as 0 and 1)
and functions on its members. In this example, the name “+” has
a meaning as an exported function from Integer.

5. The body of the function double is the expression “n + n”. The
value of this expression is returned as the result of the function. It
is not necessary to use an explicit “return” statement, although
it is permitted. This turns out to be very convenient when many
functions have very short definitions, as is normal with abstract
data types or object-oriented programs.

2.2
Square
roots

#include "aldor"

-- Compute a square root by six steps of Newton’s method.
-- This gives 17 correct digits for numbers between 1 and 10.

DF ==> DoubleFloat;

miniSqrt(x: DF): DF == {
r := x;
r := (r*r + x)/(2.0*r);
r := (r*r + x)/(2.0*r);
r := (r*r + x)/(2.0*r);
r := (r*r + x)/(2.0*r);
r := (r*r + x)/(2.0*r);
r := (r*r + x)/(2.0*r);
r

}

Figure 2.2: Simple program 2

Our second program illustrates several more aspects of the language:

1. Comments begin with two hyphens “--” and continue to the end
of the line.

2. Abbreviations (“macros”) may be defined using “==>”. The line
DF ==> DoubleFloat;

10 · Some simple programs

causes “DF” to be replaced by “DoubleFloat” wherever it is used.
3. A function’s body may be a compound expression. In this example

the body of the function is a sequence consisting of eight expressions
separated by semicolons and grouped together by braces. These
expressions are evaluated in the order given. The value of the last
expression is the value of the sequence, and hence is the value of
the function.

4. The semicolons separate expressions. It is permitted, but not nec-
essary, to have one after the last expression in a sequence.

5. Variables may be assigned values using “:=”.
6. The variable “r” is local to the function miniSqrt: it will not be

seen from outside it. Variables may be made local to a function by
a “local” declaration or, as in this case, implicitly, by assignment.

7. In this function the variable “r” contains double precision floating
point values. Since this may be inferred from the program, it is
not necessary to provide a type declaration.

2.3
A loop and
output

#include "aldor"
#include "aldorio"

factorial(n: Integer): Integer == {
p := 1;
for i in 1..n repeat p := p * i;
p

}

import from Integer;

stdout << "factorial 10 = " << factorial 10 << newline;

Figure 2.3: Simple program 3

The third program has a loop and produces some output. Things to
notice about this program are:

1. This example has expressions which occur at the top-level, outside
any function definition. This illustrates how the entire source pro-
gram is treated as an expression sequence, which may (or may not)
contain definitions among other things. This entire source program
is treated in the same way as a compound expression forming the
body of a function: it is evaluated from top to bottom, performing
definitions, assignments and function calls along the way.

2. As we saw in a previous example, the declarations “: Integer” suf-
fice to make the exports from Integer visible within the factorial
function. This gives meaning to “1”, “*” and “..”.
These declarations do not, however, cause the exports from Integer
to be visible at the top-level of the file, outside the function factorial.

2.3. A loop and output · 11

This conservative behaviour turns out to be quite desirable when
writing large programs, since adding a new function to a working
program will not pollute the name space of the program into which
it is inserted.
In order to be able to use the exports of Integer at the top-
level of the file, we have used an “import” statement. Import-
ing TextWriter allows the use of stdout, String is needed for
"factorial 10 = " and Character allows the use of newline.

3. The last line of the example produces some output. The general
idea is to use the infixed name “<<” to output the right-hand ex-
pression via the left-hand text writer.
Syntactically, “<<” groups from left to right so a minimum number
of parentheses are needed: the line in the example is equivalent to
((stdout << "factorial 10 = ") << factorial 10) << newline;

4. The last line is simple but refers to many things. We shall say
exactly where each of them comes from:
• The name “stdout” is a TextWriter.
• The expression “"factorial 10 ="” is a String constant.
• “newline” is a Character.

All the above are visible by virtue of the “#include "aldorio"”
statement at the beginning of the example.
• We have already seen where “factorial” and “10” come from.
• This leaves “<<”. There are three uses, and each use refers to

a different function. The first one takes a string as its right
(second) argument and comes from the #include "aldorio"
statement. The second one takes an Integer and is imported
along with the other operations in with the “: Integer” dec-
laration. The last one takes a Character and also comes from
the #include "aldorio" statement.

5. Let us look more closely at the use of the factorial function in
the last line: “factorial 10”. No parentheses are needed here
because the function has only a single argument. If the function
took two arguments, e.g. “5, 5”, or if the argument were a more
complicated expression, e.g. “5 + 5”, then parentheses would be
needed to force the desired grouping.

6. A word of caution is necessary here: the manner of output is defined
by the particular library, not the language. The form of output
in this example is appropriate when using “#include "aldorio"”
but may not work in other contexts.

The difference between #include "aldor" and #include "aldorio"
might not be clear yet, here is an explanation. #include "aldor" is
the general include statement that will allow the types and functions
from libaldor to be visible. It is necessary to use it (or an equivalent
library) in order to write programs. #include "aldorio" is merely a
convenience which will automatically import types used for input/output
(and, in particular, printing values to the standard output).

12 · Some simple programs

2.4
Forming a
type

#include "aldor"

MiniList(S: OutputType): MiniListType(S) == ...

Figure 2.4: Simple program 4 — Skeleton

The fourth example shows MiniList, a type-constructing function.
We will defer showing the body of the function for a moment, until we
have had a first look at the definition.
The MiniList function will provide a simple list data type constructor,
allowing lists to be formed with brackets, for example [a, b, c]. All
the elements of the list must belong to the same type, S, the parameter
to the function.
This is a simple example of how one might use MiniList:

MI ==> MachineInteger;
square(n: MI): MI == {

sql: MiniList MI := [1, 4, 9, 16, 25];
if n < 1 or n > 5 then error "Value out of range";
sql.n -- the (n)th component of sql

}

The definition of MiniList is just like the definitions we have seen in the
previous examples:
• MiniList accepts a parameter, S, which is declared to belong to a

particular type — in this case “OutputType”.
• MiniList returns a result which is declared to belong to a partic-

ular type — in this case to the type “MiniListType(S)”.
• The body of the function MiniList is an expression to compute

the return value, given a value for the parameter.
The name OutputType is meaningful by virtue of the “#include” line.
OutputType is a type whose members are themselves types. The same is
true for MiniListType(S). A type such as this, whose members are types,
will be called a type category, or simply a category where no confusion
can arise.
What we have seen implies that MiniList is a function which takes a
type parameter and computes a new type as its value.
Now that we have had the bird’s eye view, it is time to take a second
look at the function. The complete definition is given in Figure 2.4.

2.4. Forming a type · 13

#include "aldor"

define MiniListType(S: OutputType): Category == with {
empty: %;
empty?: % -> Boolean;
bracket: Tuple S -> %;
bracket: Generator S -> %;
generator: % -> Generator S;
apply: (%, MachineInteger) -> S;
<<: (TextWriter, %) -> TextWriter;

}

MiniList(S: OutputType): MiniListType(S) == add {
Rep == Union(nil: Pointer, rec: Record(first: S, rest: %));

import from MachineInteger, Boolean, Rep;

local cons (s:S,l:%):% == per(union [s, l]);
local first(l: %): S == rep(l).rec.first;
local rest (l: %): % == rep(l).rec.rest;

empty: % == per(union nil);
empty?(l: %):Boolean == rep(l) case nil;

[t: Tuple S]: % == {
l: % := empty;
for i in length t..1 by -1 repeat

l := cons(element(t, i), l);
l

}
[g: Generator S]: % == {

r: % := empty; for s in g repeat r := cons(s, r);
l: % := empty; for s in r repeat l := cons(s, l);
l

}
generator(l: %): Generator S == generate {

while not empty? l repeat {
yield first l; l := rest l

}
}
apply(l: %, i: MachineInteger): S == {

while not empty? l and i > 1 repeat
(l, i) := (rest l, i-1);

empty? l or i ~= 1 => error "No such element";
first l

}
(out: TextWriter) << (l: %): TextWriter == {

empty? l => out << "[]";
out << "[" << first l;
for s in rest l repeat out << ", " << s;
out << "]";

}
}

Figure 2.5: Simple program 4 — Details

14 · Some simple programs

A few points will help in understanding this program:
1. The first thing to note is that the new type constructor is defined

as a function MiniList whose body is an “add” expression, itself
containing several function definitions. It is these internal functions
of an “add” function which provide the means to manipulate values
belonging to the resulting types (such as MiniList(Integer) in
this case).

2. This program uses various names we have not seen before, for ex-
ample “Record”, “Pointer”, “element”, etc. Some of these, such
as “Pointer”, are made visible by the #include lines, while others,
such as “element”, are made visible by declaring values to belong
to particular types.
The names which have meanings in libaldor are detailed in the
documentation for that library.

3. While OutputType and MiniListType(S) are both type categories,
the types in each category have different characteristics. The dif-
ference lies in what exports their types must provide:
• Every type which is a OutputType must supply an output func-

tion (“<<”).
Since S is declared to be a OutputType, the implementation
of MiniList can use the “<<” from S in the definitions of
MiniList’ own operations.
• Every type which is a MiniListType(S) must supply sev-

eral other operations, such as a constructor function called
“bracket” to form new values, a test function called “empty?”,
and so on. MiniList(S) provides a MiniListType(S), so it
must supply all these operations. Users of MiniList(S) will
be able to rely on these operations being available.

4. The first line of the “add” expression defines a type “Rep” (specific
to “MiniList”). This is how values of the type being defined are
really represented. The fact that they are represented this way is
not visible outside the “add” expression.

5. Several of the functions defined in the body have parameters or
results declared to be of type “%”. In any “add” expression, the
name “%” refers to the type under construction. For now, “%” can
be thought of as a shorthand for “MiniList(S)”.

6. There are several uses of the operations “per” and “rep” in this
program. These are conversions which allow a data value to be
regarded in is public guise, as a member of “%”, or by its private
representation as a member of “Rep”.
• rep: % -> Rep

• per: Rep -> %

These can be remembered by the types they produce: “rep” pro-
duces a value in Rep, the representation, and “per” produces a
value in %, percent.

7. Some of the function definitions are preceded by the word “local”.

2.4. Forming a type · 15

This means they will be private to the “add”, and consequently will
not be available to users of MiniList.

8. Some of the definitions have left-hand sides with an unusual syntax:
[t: Tuple S]: % == ...
[g: Generator S]: % == ...
(out: TextWriter) << (l: %): TextWriter == ...

In general, the left-hand sides of function definitions in Aldor look
like function calls with added type declarations. Some names have
infix syntax, for instance “<<” above. These are nevertheless just
names and, aside from the grouping, behave in exactly the same
way as other names. The special syntactic properties of names
may be avoided by enclosing them in parentheses. Other special
syntactic forms are really just a nice way to write certain func-
tion calls. The form “[a,b,c]” is competely equivalent to the call
“bracket(a,b,c)”.
With this explanation, we see that the defining forms above are
equivalent to the following, more orthodox forms:

bracket(t: Tuple S): % == ...
bracket(g: Generator S): % == ...
(<<)(out: TextWriter, l: %): TextWriter == ...

9. The use of the type “Generator S” is explained fully in chapter 9,
so for now we will only provide a brief overview.
The function “generator” illustrates how a type can define its
own traversal method, which allows the new type to decide how
its component values should be obtained, say for use in a loop.
Such a definition utilises the function “generate”, in conjuction
with “yield”: each time a “yield” is encountered, “generate”
makes the given value available to the caller and then suspends
itself. This technique is described more fully in Section 9.3. When
the next value is needed, the generator resumes where it left off.
Since MiniList(S) implements a “generator” function for objects
of type MiniList, it is possible to iterate over them in a “for” loop.
For example, in the output function “<<”, we see the line

for s in rest l repeat out << ", " << s;
Here “rest l” is traversed by the generator to obtain values for
“s”.

16 · Some simple programs

2.5
Continuing
...

These first examples already give a fairly good start at reading Aldor
programs. The reader is now equipped to understand most Aldor pro-
grams, at least in broad terms. For those who wish to understand the
language in more detail, Part II presents further aspects of the language
and revisits what we have already seen in more depth.
At this point, readers may decide to continue by studying the examples
given in chapter 21, or by trying examples of their own.

2.5. Continuing ... · 17

PART II

The Aldor programming language

CHAPTER 3

Language orientation

3.1
Traditional
and non-
traditional
aspects

In many regards, Aldor is a very conventional programming language:
• The language uses explicit evaluation, with the usual control flow.

Functions play an important role, and most of a program’s text
consists of function definitions.
• Computed values may be saved in named variables or named con-

stants.
• The language is statically typed so the nature of each variable is

understood before evaluation begins. It is possible to write pro-
grams with all names explicitly declared, but the types and scopes
of names are inferred if desired.

• Overloading of names is possible: there may be several different
meanings for a given name visible simultaneously. The meaning
of each occurrence is determined by the type required in context.
Ambiguities may be explicitly resolved by stating the type or origin
of the given name.
• Functions may be called with named parameters, which may have

default values.
It is possible to transliterate most programs written in languages such
as C, C++, Fortran or Lisp almost directly into Aldor.
In other regards, Aldor is somewhat unconventional:
• Functions are first class values and the language provides useful

ways to create and manipulate them dynamically. (Many languages
allow functions to be used as values, but have no way to create or
combine them during execution.)
• Types are first class values and the language provides useful ways

to create and manipulate them dynamically.

21

• Dependent types provide the freedom to defer decisions until pro-
gram execution, but provide enough discipline to allow safe, effi-
cient programs.
• Programs may make independent, post facto extensions to libraries.

This allows existing types to belong to newly defined families with-
out modifying the original code.
• Generators and type-specific tests provide control abstraction, i.e. a

way for looping and branching expressions to use new types. While
the language is statically typed, types themselves are dynamic val-
ues.
• The efficiency of symbolic and of numeric computation received

equal consideration in the design of the language.
Some of these language aspects, when taken together and handled uni-
formly, have particularly powerful interactions.
We give one example: Since types are first class values, functions may
take types as parameters and return types. Let us call such a type-to-
type function a “functor.” Since functions are first class, so are these
functors. Therefore it is possible to write programs which manipulate
functors. A functor-manipulating program is discussed in Section 21.9.
Programs such as these may be used to reorganise levels in type towers
— for instance, to make the dynamic choice to convert values in the type

Array List Integer

to values in the type

List Array Integer.

3.2
Expressions
and
evaluation

An Aldor program consists of a set of expressions representing a compu-
tation to be performed. Performing the computation is called evaluation
or execution and produces a set of values.
Each value has an associated type, which dictates how the value is to
be represented in computer memory. Expression evaluation may cause
other actions beyond producing values. These additional actions are
called side-effects and include things such as output and modifying the
values stored in computer memory.
The syntax of the language allows larger expressions to be built up from
smaller ones. The evaluation of an expression may involve the evaluation
of some or all of its subexpressions, and its value can be formed using
the values of the subexpressions.
Elements such as if s, loops, and function forms are all expressions in
Aldor. This contrasts with some other languages, such as C or Fortran,

22 · Language orientation

where they are special “statements” which can only appear in limited
contexts.
The rules of the Aldor programming language ensure that, in a well-
formed program, all the values potentially produced by any given ex-
pression have the same type. This has two consequences: it allows pro-
grams to be transformed to faster, equivalent code, by avoiding type
tests during execution, and, more importantly, it allows a common class
of programming errors to be detected immediately.
We say the Aldor programming language is expression based and statically
typed.

3.3
Functions

Functions are treated as values in the same way as integers, lists or float-
ing point numbers. The language provides mechanisms for composing
and manipulating functions in useful ways, incorporating them in other
data structures, or returning them as results.
Functions may depend on values defined externally to them so the act
of dynamically creating a new function value captures the creation envi-
ronment, forming what is normally called a closure.

3.4
Domains

Often, several functions operate within a common environment. For this
reason, in Aldor, an environment is called a domain of computation, or
domain for short. Environments are essentially dictionaries which tie
names to values. The language allows environments to be created and
manipulated dynamically, and these form the basis for abstract types,
packages, and objects as first-class values.
The language provides general mechanisms to allow new types to be used
in all the same ways as built-in types: they may provide the same sort
of literal constants, participate in the same control structures, admit the
same optimisations, etc. To ensure this equal status, the built-in types
make use of the same general mechanisms to provide their function.
This has had two consequences: first, the extension mechanisms are per-
vasive and powerful; second, the language itself has very little built in.
The language provides a minimal set of primitive types and operations.
These are combined and extended in standard libraries to provide a rich
set of facilities.

3.5
Compilation

Normally, evaluation does not directly use the source form of the expres-

3.3. Functions · 23

sions in a program. Rather, the evaluation is usually effected by first
translating the source expressions to an equivalent set of lower-level in-
structions more suitable for the target environment. This is the job of
the Aldor compiler. The result of the translation is a program which
produces the same values and side-effects as the original program, but
which might otherwise be represented very differently.

3.6
Libraries

Aldor is geared to developing and using combinations of libraries. Certain
properties of the language have therefore been oriented to controlling the
dependencies and interactions among libraries of programs.
A source program can see only the declared public behaviour of the files
it uses.
A compiled program can depend on the private behaviour of the files it
uses, but only when given explicit permission to do so. It is up to the
client to decide whether it is willing to become dependent on the private
behaviour of the provider.
In practice, this permission amounts to increased scope for optimisation.
In no case does it allow a source-level dependency.

24 · Language orientation

CHAPTER 4

Basic syntax

4.1
Syntax
components

An Aldor program consists of a series of lines of text. These lines of text
may be stored in a single file, or gathered from several files, or typed in
as interactive input.
Some lines are not part of the Aldor program proper, but instead control
its composition and the environment in which it is handled. These lines
are called system commands. A system command is a line which has a
hash character “#” as its first character. (Note that no white space may
precede the “#” on the line.)
The example programs in this chapter use the following system com-
mands:

#include "filename.as"
#pile
#endpile

The system command #include "filename.as" causes the lines of text
from “filename.as” to be inserted into the Aldor program in place of
the #include command.
The system commands #pile and #endpile are used to enclose lines of
text in which indentation is used to determine the nesting of sequences
of Aldor expressions. (See Section 4.8.)
A complete list of system commands is given in Section 22.1. Sys-
tem commands used in the interactive interpreter are described in Sec-
tion 18.2.
When the series of lines comprising an Aldor program has been collected
together, these lines are interpreted as a series of words, or tokens. There
are several classes of tokens, each of which has a different meaning:

25

Identifiers such as “Fred” and “rgf32” are used as names for variables
and constants.

Literals such as 42, 1.414 and "Urania riphaeus", represent explicit
values. Literals are described in Section 5.2 on page 38.

Keywords such as “if” and “==” each have a special meaning in the
language, and impose a special structure on neighbouring expres-
sions.

Operators such as “by” and “+” have special syntactic properties, but
are otherwise the same as identifiers (i.e. they are used as names
for variables and constants).

Comments are used to insert free-form text into a program. A com-
ment begins with the two characters “--” and continues until the
end of the current line of text.

Descriptions are used to provide user-level documentation for func-
tions, domains and categories defined in the program. A descrip-
tion begins with the two characters “++” and continues until the
end of the current line of text.

White space consists of spaces, tabs, and newlines. White space is
used to determine source position (line and column) information
for message reporting, and for piling (See Section 4.8).

The exact rules for the syntax of each of these token classes is given in
Section 22.2.3.

4.2
Escape
character

The underscore character “ ” is used as an escape character in Aldor to
modify the interpretation of the characters which follow. For example, an
escape character followed by any amount of white space (spaces, tabs, and
newlines) causes the white space to be ignored, allowing the characters
on either side of the white space to form a single token, such as a name
or a literal.
Section 5.1 describes how the escape character can be used inside an
identifier, and Section 5.2 describes how the escape character can be
used inside a literal.

4.3
Keywords

The basic components of any Aldor program can be separated into two
broad categories: those which are defined by the language, and those
which may be defined or redefined by the program. For example, the
meaning of the word “if” is defined by the language, and all “if” state-
ments behave according to the same rules. On the other hand, the mean-
ing of a name such as “a” or “9” or “+” is determined by the program
in which it is used.
A keyword in Aldor is a word whose meaning is fixed by the definition
of the language. The following words are keywords which may not be

26 · Basic syntax

redefined:

add and always assert break
but catch default define delay
do else except export extend
fix for fluid free from
generate goto has if import
in inline is isnt iterate
let local macro never not
of or pretend ref repeat
return rule select then throw
to try where while with
yield

. , ; : :: :* $ @
| => +-> := == ==> ’
[] { } ()

Generally, language-defined aspects of keywords offer protocols which
allow them to work with new types as well as with language-defined
types. So, for example, the language-defined “if”, provides a way for
the condition to be an expression which evaluates to any type, provided
that type has certain properties.
The following keywords are meaningless in the current language defini-
tion, but are reserved for future language extensions.

delay fix is isnt let rule

(| |) [| |] {| |} ‘ & ||

4.4
Names:
identifiers
and
operators

A name is an identifier used to denote a variable or a constant. Most
names begin with a letter or the character “%” and are made up of letters,
digits and the characters “%”, “?” and “!”. The words “0” and “1”
are also treated as names in Aldor so that mathematical structures can
export identity elements without having to support integer literals. (See
Section 5.2.)
Examples:

mylist Integer empty? set! %5

Any character may be included in a name by preceding it with the escape
character (“ ”):

*PACKAGE* _42skidoo mod_+ _*_+

4.4. Names: identifiers and operators · 27

When used in an identifier, the escape character is not included in the
name of the identifier. To include a single underscore character in the
name of an identifier, the sequence “ ” must be used. So the name of the
identifier denoted by “mod +” is “mod+”, and the name of the identifier
denoted by “My Integer” is “My Integer”.
A sequence of letters which would otherwise be considered a keyword
(such as “if”) can be treated as a name by escaping one of its constituent
letters (as in “ if”).
Certain names are treated as having special syntax properties by the
language. The following identifiers can be used as infix operators, prefix
operators, or both:

by case mod quo rem
+ - +- ~ ^
* ** .. = ~= ^=
/ /\ < <= << <-
\ \/ > >= >> ->

Aside from their syntactic properties, these names behave just as other
identifiers. See Section 4.6 for examples of using infix operators in dif-
ferent contexts.
A few naming conventions are used in the standard libraries:

• Names beginning with capital letters are used for types or type-
producing functions.
• Names ending with a question mark are used for Boolean values,

or functions which return Boolean values.
• Names ending with an exclamation mark are used for functions

whose primary purpose is to perform a side-effecting (in particular,
a so-called “destructive”) operation.

Note that these are only notational conventions and are not considered
as part of the language.

4.5
Comments
and
descriptions

Comments and description strings annotate a program to help other
people and other programs understand it.
A comment begins with the two characters “--” and continues until the
end of the current line of text. Comments can be used to describe how a
program operates, including an explanation of special assumptions made
by the program, or a step-by-step description of the implementation of
the algorithms used by the program. Comments are not examined by
the compiler, and do not affect the meaning of a program.
A description begins with two or three plus characters (“++” or “+++”)
and continues until the end of the current line of text. A description

28 · Basic syntax

should be used to describe the external characteristics of a program,
such as the parameters it will accept or the method used to compute the
result.
Description strings are saved in the compiler output in a form accessible
by other programs. If a description begins with three plus characters
(“+++”), then the name it describes should appear immediately after
the description. If a description begins with only two plus characters
(“++”), then the name it describes should appear immediately before the
description:

+++ An approximation to Euler’s constant,
+++ which is defined as the value of the limit
+++
+++ lim(n->infinity) (1 + 1/2 + 1/3 + ... + 1/n - ln n)
+++
gamma: DoubleFloat == 0.57721_56649_01532_86060_65121;

+++ ‘pi’ is the ratio of a circle’s circumference to its diameter.
pi: DoubleFloat == 3.14159_26535_89793_23846_26434;

++ This is not 22/7.

Avogadro: DoubleFloat == 6.022e23;
++ The ratio between grams and molecular weights.

Both “+++” and “++” are used so that after a semicolon we can still
associate a description with the previous declaration.
It is easy to remember the difference between comments and descriptions:
the Aldor compiler keeps positive remarks, and throws away negative
ones.
Example:

-- This is a quick-and-dirty move generator, with two of
-- the utility functions also made visible.

ChessPiece: with {
bestMoves: (Board, %) -> MoveTemplate;

++ ‘bestMoves p’ suggests the best moves in the
++ given position.

legalMoves: (Board, %) -> MoveTemplate;
++ ‘legalMoves p’ generates quasi-legal moves.
++ It does not handle en passant or castling.

value: (Board, %) -> DoubleFloat;
++ This is a score which estimates the current
++ value in the given position.

}
== add {

...
}

4.5. Comments and descriptions · 29

4.6
Application
syntax

Applications are typically used to denote function calls, array indexing,
or element accessors for compound data types.
A prefix application typically has the following form:

f(a1, ..., an)

There are two additional forms for specifying a prefix application to one
argument: juxtaposition and an infix dot.

f a
f.a

The second of these forms is completely equivalent to f(a); the first is
equivalent in a free-standing occurrence but associates differently — to
the right, rather than the left:

f a b c -- is equivalent to (f (a (b c)))
f.a.b.c -- is equivalent to (((f.a).b).c)
f(a)(b)(c) -- is equivalent to ((f(a))(b))(c)

Any application in which the argument is enclosed in parentheses (“(
)”) or square brackets (“[]”) is treated as being of the “typical” form,
and so associates to the left — even if a space follows the applied object.
Thus “first [1,2,3]” is treated as identical with “first([1,2,3])”.
The interpretation of mixed forms is determined by precedence rules:
the precedence of juxtaposition is lower than that of the other forms,
which are all equivalent, so an expression such as “f(a).2(b)(c).x y”
is associated as “((((((f(a)).2)(b))(c)).x) y)”. (A complete table
of Aldor operator precedence appears in Section 4.7.1.)
Infix operators are applied to a pair of arguments using infix notation
for function application:

a + b -- infix notation for a call to ‘(+)(a, b)’

Infix operators are generic in that they can be given definitions in Aldor
programs just as other identifiers. The typical form for an infix function
definition is as follows:

(s1: S1) op (s2: S2) : T == E

where “op” is one of the infix operators listed in Section 4.4.
An infix operator can be used in any context where other names can be
used. However, in some contexts the infix operator must be enclosed in
parentheses to suppress its normal syntactic properties:

30 · Basic syntax

-- Here is a declaration for ‘*’.
*: (%, %) -> %

-- Here ‘*’ is used as a variable.
* := myMultiplicationMethod

-- Here is a typical use of ‘*’ as an infix operator.
a * b

-- Here ‘*’ is used as a prefix operator
-- by enclosing it in parentheses.
(*)(a, b)

-- Here ‘*’ is passed as an argument to a function.
reduce(*, l)

-- Here ‘*’ is being used as an argument of another infix operator.
f := (*) + g(*, 1)

An infix operator must be enclosed in parentheses to be used as a pre-
fix operator. Also, an infix operator cannot appear as an argument of
another infix operator unless it it enclosed in parentheses.
Alternatively, the same name may be given as an identifier , rather than
an infixed operator, using the escape character to include special char-
acters, for example: _*(a, b).

4.7
Grouping

Complex expressions in Aldor are formed according to the precedence
of the operators appearing in the expression. When an expression is
formed, the operators with higher precedence form the subexpressions
for the operators with lower precedence.
Parentheses (“()”) and braces (“{ }”) can be used to override the nat-
ural precedence order defined by the language.
Because comma has a lower precedence than most other syntactic forms,
it is often necessary to enclose comma-separated expressions in parenthe-
ses. We write “f(1, 2)”, since “f 1, 2” would be associated the same
way as “(f 1), 2”.
Likewise, we write “(a, b) := (1, 2)” (see Section 5.8 for an explana-
tion of this notation), since “a, b := 1, 2” would be associated as “a,
(b := 1), 2”.
Similarly, the expression “(1 + 2) * 3” evaluates to 9, while the ex-
pression “1 + 2 * 3” evaluates to 7, since the “*” operator has a higher
precedence than the “+” operator.
Braces are normally used to enclose sequences of expressions (see Sec-
tion 5.9):

foo(x: Integer, y: Integer): Integer == {
a := x * y;
b := a * a;

4.7. Grouping · 31

b
}

The meaning of an expression is the same whether braces or parentheses
are used. Braces are normally used to enclose a longer expression (espe-
cially sequences) split over several lines. Parentheses are normally used
to enclose shorter expressions (especially multiple values–see Section 5.8)
as part of other expressions.
An implicit semicolon is assumed, if possible, after a closing brace. This
is determined by whether the following token may start a new expression.
For instance, in the construct

f: with {...} == add ...

introduced in Section 7.9, the “==” may not start an expression, so no
semicolon is assumed.
To make the use of braces as natural as possible, an expression in braces
may not be used as an argument to an infixed operator, e.g. “+”, “-”,
“..”. This is because many infixed operators may also be used in pre-
fixed position. (Some, incidentally, may also be postfixed.) With infixed
operators, parentheses may be used to achieve the desired effect — for
example:

{a; b; c} + d -- not ok
({a; b; c}) + d -- ok
(a; b; c) + d -- ok

4.7.1
Precedence

Figure 4.1 provides a table of keywords and operators, given in order of
syntactic precedence. Expressions are represented by “e” and keywords
or operators by “◦”.
Each of the numbered entries in the table lists syntactic elements with
the same precedence. The entries at the top of the table group most
loosely, and those at the bottom most strongly. So, for example, since
“+” is above “*”, the expression

a * b + c * d

groups as “(a*b) + (c*d)”. Entries with the same level number have
the same precedence. For instance, “and” and “/\” have the same group-
ing strength.
Some operators have both unary and binary forms. Some of these oper-
ators have meanings defined in the standard base libraries (e.g. infixed

32 · Basic syntax

“+” and “*”), while others do not (e.g. prefixed “=” and “+-”). A pro-
grammer may provide new meanings for operators, but not for keywords.
Entries for operators are flagged with “†”; keyword entries are unflagged.
This table can serve as a convenient reference for determining relative
strengths of keywords and operators. The full details of the language
syntax are given in chapter 22.

Keyword/Operator Associativity Unary
1. ; (e ◦ e) ◦ e —
2. default define export extend — —

fluid free import inline — —
local macro — —

3. , (e ◦ e) ◦ e —
4. where (e ◦ e) ◦ e —
5. := == ==> +-> e ◦ (e ◦ e) —
6. break do generate goto — —

if iterate never repeat — —
return yield — —
=> e ◦ (e ◦ e) —

7. for while — —
8. and or (e ◦ e) ◦ e —
† /\ \/ (e ◦ e) ◦ e —

9. † = ~= ^= >= > >> <= < << (e ◦ e) ◦ e ◦ e
† case is isnt (e ◦ e) ◦ e ◦ e

has (e ◦ e) ◦ e —
10. † .. by (e ◦ e) ◦ e e ◦
11. † + - +- (e ◦ e) ◦ e ◦ e
12. † mod quo rem (e ◦ e) ◦ e —
13. † * / \ (e ◦ e) ◦ e —
14. † ** ^ e ◦ (e ◦ e) —
15. :: @ pretend (e ◦ e) ◦ e —
16. † -> <- e ◦ (e ◦ e) —
17. $ e ◦ (e ◦ e) —
18. add with (e ◦ e) ◦ e ◦ e
19. per ref rep not ~ # — ◦ e

A B (juxtaposition) e ◦ (e ◦ e) —
20. A(B) A[B] A.B (e ◦ e) ◦ e —

Figure 4.1: Keyword and operator precedence

4.7. Grouping · 33

4.8
Piles

Programmers often use indentation to make the visual structure of a
program conform to its syntactic structure, so that programs are easier
to read. In Aldor, white space is usually ignored except to delimit tokens
and to compute source position information. However, the compiler can
be instructed to use indentation as part of the syntax of the language
using a scheme known as piling.
Two system commands are used to instruct the compiler to enable and
disable piling syntax, as desired, at various points in an Aldor program.
The system command “#pile” instructs the compiler to use piling syntax
for the source lines which follow, and the system command “#endpile”
instructs the compiler to ignore initial white space on the source lines
which follow.
Although the system commands “#pile” and “#endpile” are usually
found in pairs, the “#endpile” system command can be omitted at the
end of a file.
When piling syntax is being used, indentation is treated roughly as fol-
lows (see Section 22.3 for full details); a further example of an Aldor
program which uses piling syntax can be found at page 209.
Expressions which are indented by the same amount are grouped together
as a sequence (see Section 5.9) as though they were enclosed in braces
and separated by semicolons. A sequence of expressions indented by the
same amount is called a pile.
An expression which is too large to fit on one line at the current indenta-
tion level can be continued on another line by indenting the continuation
line more than the initial line.
The indentation rules are applied first to the most indented lines, working
outward to the lines which are indented the least.
The following example shows the piling rules being applied to a program
which uses piling syntax, to convert it to an equivalent program which
does not use piling syntax:

#pile
GetUp()
if Saturday then

CookBreakfast()
Eat << Toast << Tomato << Bacon

<< Eggs
HaveShower()
DrinkCoffee()

Because the line “<< Eggs” is indented with respect to the previous line,
the two are joined.

#pile
GetUp()
if Saturday then

CookBreakfast()

34 · Basic syntax

Eat << Toast << Tomato << Bacon << Eggs
HaveShower()
DrinkCoffee()

The “CookBreakfast” and “Eat...” lines form a pile, which can be
rewritten as a semicolon separated sequence:

#pile
GetUp()
if Saturday then {

CookBreakfast();
Eat << Toast << Tomato << Bacon << Eggs

}
HaveShower()
DrinkCoffee()

And finally the entire program is treated as a pile:

{
GetUp();
if Saturday then {

CookBreakfast();
Eat << Toast << Tomato << Bacon << Eggs

}
HaveShower();
DrinkCoffee()

}

Readers wishing to experiment interactively with our examples (by using
“aldor -gloop”) should note that piling is the default in interactive
use. The examples generally should still run correctly if the illustrated
layouts are used — a few may require the addition of braces (“{ }”).
See chapter 18 for further details.

4.8. Piles · 35

CHAPTER 5

Expressions

Aldor is an expression-based language: every construct in the language
produces zero, one or more values. This chapter describes the structure
of expressions in Aldor and the rules for expression evaluation.
Section 5.1 Names page 37
Section 5.2 Literals page 38
Section 5.3 Definitions page 40
Section 5.4 Assignments page 41
Section 5.5 Functions page 42
Section 5.6 Function Calls page 42
Section 5.7 Imperatives page 43
Section 5.8 Multiple Values page 43
Section 5.9 Sequences page 44
Section 5.10 Exits page 45
Section 5.11 If page 47
Section 5.12 Select page 48
Section 5.13 Logical Expressions page 48
Section 5.14 Loops page 50
Section 5.15 Generate Expressions page 57
Section 5.16 Collections page 58
Section 5.17 General Branching page 59
Section 5.18 Never page 60

5.1
Names

The evaluation of a name in Aldor causes the value of a variable or
constant to be retrieved.
If a name refers to a variable or constant defined in the same scope
or in an enclosing scope then retrieving its value is a very inexpensive
operation. If a name refers to an imported constant, then there may be a
cost associated with the look up, depending on the degree of optimisation

37

used to compile the program.
Consider the following example:

#include "aldor"

f(n: MachineInteger): MachineInteger ==
if n < 2 then

1
else

n * f(n-1);

In the last line, the name “n” is defined in the current scope and the
name “f” is defined in an enclosing scope, so their use is very inexpensive.
The names “*”, “-” and “1” are imported from MachineInteger. If this
program is compiled with optimisation, then there is no cost in using the
values from MachineInteger. Without optimisation, these values would
have to be dynamically retrieved from MachineInteger at a modest cost.
A name may represent a variable, which may take on different values at
different points in a computation, or a constant , which always refers to
the same value every time it is used.
Names for constants may be overloaded in Aldor. That is, it is possible
to have more than one constant with a given name, visible at the same
point in a program. Names for variables cannot be overloaded. A name
cannot represent both a variable and a constant in the same scope.

5.2
Literals

Literal constants are expressions which represent the explicit data values
which appear in a program. There are three styles of literal constants in
Aldor: quoted strings, integers and floating-point numbers:

"Aloha!" -- quoted string literal
10203040 16rFFFFC010 -- integer literals
1.234e56 -- floating-point literal

The meaning of a constant in Aldor is determined by the environment
in which it is used. For example, the constant “1.234e56” might be a
value of type SingleFloat or DoubleFloat, depending on the context.
When a literal expression is encountered in a program, it is treated as
an application of a corresponding “literal accepting” operation:

string: Literal -> T
integer: Literal -> T
float: Literal -> T

(where “T” represents the type of the value being formed). Each of these
operations takes a single argument of type Literal and constructs a
value of the appropriate type. When programs are compiled against the

38 · Expressions

base Aldor library, the constant-folding optimisation will immediately
convert constants of the following types to their machine representations:
String, MachineInteger, Integer, SingleFloat, DoubleFloat.
New types may provide their own interpretation of literal constants by
exporting a literal forming operation with the corresponding signature.
As a consequence, if operations for creating string literals, for example,
are available from several types, it may be necessary to provide a decla-
ration to indicate which kind of literal is intended. When implementing
literal-forming operations for new types, it is often useful to use the
string literal-forming operation from String.
Some types may accept some literal values and not others. For example,
a fixed-precision integer type might reject values which lie outside the
range of values representable by the type.

String literals String-style literals are enclosed in quotation marks. Inside a string-
style literal, an underscore character “ ” is used as an escape character
to modify the meaning of the characters which follow:

• A quotation mark after an underscore includes a quotation mark
in the literal instead of ending the literal.
• An underscore after an underscore includes a single underscore in

the literal.
• White space (any number of blanks, tabs or newlines) following an

underscore is ignored, and not included in the literal.

Examples:

"This literal is a _"string-style_" literal."
"This literal contains a single underscore: ’__’."

s := "This literal is moderately long, and is broken _
over two lines, even though the result is a single line."

When using libaldor the type String provides string-style literals.
Integer literals Integer-style literals provide a syntax for whole numbers. These are in

base ten unless otherwise indicated.
An integer-style literal is either
• a sequence of one or more digits, [0-9]+, with the exception of a

single “0” or single “1”, or
• a sequence of one or more digits giving a radix (base), followed

by the letter “r”, followed by a number of radix-digits using digits
and/or capital letters: [0-9]+r[0-9A-Z]+.

In Aldor the numerals “0” and “1” are not literal constants – they are
treated as names so that various mathematical structures which export
0 or 1 can do so, without being required to support general integer con-
stants.

5.2. Literals · 39

An underscore appearing in the middle of an integer-style literal is ig-
nored together with any following white space. An underscore which
appears at the very beginning of a word causes the whole word to be
treated as an identifier, rather than as a literal constant.
Examples:

22_394_547

38319238471239487123948237_
192387491234712398478188_
139823712983712938712391

_33 -- This word is an identifier, not an integer-style literal.

2r01010101010101010101 -- Base 2
16rDEADBEEF -- Base 16

When using libaldor, the types MachineInteger and Integer provide
integer-style literals.

Floating-point
literals

Float-style literals are numbers with a decimal point, an exponent, or
both.
Examples:

3.0 3. 3e1 6.022E+23
0.2 .2 2e-1 4.8481E-6

An underscore appearing in the middle of a float-style literal is ignored
together with any following white space.

3.14159_26535_89793_23846_26433_83279_50288_41971_
69399_37510_58209_74944_59230_78164_06286_20899_
86280_34825_34211_70679_82148_08651_32823_06647

When using libaldor, the types SingleFloat and DoubleFloat provide
float-style literals.

5.3
Definitions

A constant in Aldor denotes a particular value which cannot be changed.
The general syntax for a constant definition is:

x : T == E

x is an identifier giving the name of the constant.
T is an expression giving the type of the constant. The type declaration
is optional. If the type is declared, then the type of E must satisfy it.
Otherwise the type is inferred from the type of the expression E.
E is an expression which computes the value of the constant.
Examples:

40 · Expressions

a : Integer == 23;
b == "Hello world!";

A function definition is a special case of a constant definition. Function
definitions are described in more detail in Section 6.1.
Once a value has been given to a named constant, it cannot be changed
to refer to another value.

-- A constant cannot be changed to refer to a different value.
num: Integer == 3;
num: Integer == 4; -- invalid

-- In fact, it cannot be changed to refer to the same value!
hi: String == "’Ello!";
hi: String == "’Ello!"; -- invalid

5.4
Assignments

A variable in Aldor denotes a value which may change during the evalu-
ation of a program. A variable is given a value by an assignment of the
form:

x : T := E

x is an identifier giving the name of the variable.
T is an expression giving the type of the variable. The type declaration
is optional. If the type is declared, then the type of E must satisfy it.
Otherwise the type is inferred from the type of the expression E.
E is an expression which computes the value of the variable.
Several variables may be assigned a value at the same time:

(x1 : T1, ..., xn: Tn) := E

Any or all of the type declarations may be omitted, in which case the
ith variable would read “xi”, rather than “xi: Ti”, and the type of xi
is inferred from the type of the expression E.
Examples:

n: Integer := 3;
k := 3*n + 1;
n := k quo 2;

(a, b) := (1, 3);
(s: String, x) := ("Natascia", false);

5.4. Assignments · 41

The value of an assignment expression is the same as the value of E.
A special form of assignment expression is used to provide a general kind
of updating operation:

x(a1, ..., an) := E

Typically, x is an expression which evaluates to a structured data value,
such as an array or a list, and the expressions ai taken together specify
some component of x. An assignment expression of this form is treated
as an application of the operation “set!” of the form:

set!(x, a1, ..., an, E)

For example, for lists, the “set!” function takes as its second (compo-
nent specifying) parameter a “MachineInteger” specifying the position
of the element in the list, so we could have:

#include "aldor";
import from MachineInteger, List MachineInteger;
L := [1,2,3];
...
L(1) := 4;

which would result in L having the value list(4, 2, 3).
The value of this form is the return value of the function “set!”.

5.5
Functions

Function expressions are the primitive form for building functions in
Aldor. An example of a function expression is:

(n: Integer, m: Integer): Integer +-> n * m + 1

See Section 6.5 for a complete description.

5.6
Function
calls

Typical expressions consist mostly of function calls. For example, con-
sider the expression

l: List Integer := [2 + 3, 4 - 5, 6 * 7, 8 ^ 9]

This has six explicit function calls (i.e. to the arithmetic functions “+”,
“-”, “*”, “∧”, to the n-ary function “bracket” (called using the syntax
“[...]”), and to the type constructor function “List”. This expres-
sion also has eight implicit function calls to the literal forming operation
“integer”.
See Section 4.6 for a complete description of the syntax of function calls.

42 · Expressions

5.7
Imperatives

The do expression evaluates E and discards the computed value, so that
the do expression returns no value.

do E

5.8
Multiple
values

A series of comma-separated expressions is used in Aldor to produce
multiple values. The expressions are evaluated one by one, and the results
are taken together as the (multiple) value of the whole expression:

3, 4, 5

This expression produces three values, all of type Integer. In general, an
expression in Aldor produces zero, one or more values, each having its
own type. For convenience, nevertheless, we often speak of the value and
the type of an expression, even if it produces multiple values, when the
intended meaning is clear from the context.
See Section 4.7 for a discussion of the use of parentheses in comma ex-
pressions.
Functions may be declared to accept or return multiple values. The
example below shows how to declare, define and use a function which
involves multiple values.

#include "aldor"
#include "aldorio"

-- Declaring a function to accept and return multiple values.
local f: (Integer, Integer) -> (Integer, Integer);

-- Defining a function to accept and return multiple values.
f(i: Integer, j: Integer): (Integer, Integer) == (i+j, i-j);

-- Using a function which accepts and returns multiple values.
(q: Integer, r: Integer) := divide f(100, 93);

-- Printing the result
stdout << "The quotient is " << q << newline;
stdout << "The remainder is " << r << newline;

The call to f returns (193, 7), which are passed as arguments to the
function “divide” from Integer. This returns

(193 quo 7, 193 rem 7)

which are assigned to q and r respectively.
Comma-separated expressions are not necessarily evaluated in any par-
ticular order; furthermore, the evaluation of their subexpression may be
interleaved. Thus, the program:

5.7. Imperatives · 43

#include "aldor"
#include "aldorio"

pr2(a: MachineInteger, b: MachineInteger): () ==
stdout << a << " " << b << newline;

n: MachineInteger := 1;

pr2({n := n + 1; n}, {n := n + 1; n})

could print any of “2 3”, “3 2”, “2 2” or “3 3”, depending on the imple-
mentation and whether the code is running in a multiprocessor environ-
ment. Programs which depend on the order of evaluation of expressions
to be used as arguments to a function should use a sequence to make the
order explicit. (See Section 5.9.)

5.9
Sequences

A series of expressions to be evaluated one after another is called a
sequence. A sequence is written as a semicolon-separated series of subex-
pressions:

a := 1; b := a + a; c := 3*b

The expressions (that is, the subexpressions of the sequence) are evalu-
ated one by one, in the order of their occurrence, and the value of the
last expression evaluated is used as the value of the sequence. A se-
quence may also contain one or more exit expressions, as described in
Section 5.10, which prevent the evaluation of any expressions later in the
sequence and so provide a way to return a value other than that of the
last expression in the sequence.
Because semicolon has a relatively low precedence, it is usually necessary
to enclose a sequence in braces (“{ }”) or parentheses (“()”) to get the
desired result. (See Section 4.7 for details.)
Examples:

#include "aldor"

import from MachineInteger;

n1 := (a := 1; b := a + a; 3 * b);
n2 := {a := 1; b := a + a; 3 * b}

f(i0: MachineInteger): MachineInteger == {
a := i0;
b := a + a;
3 * b

}

The meaning of a sequence is the same whether braces or parentheses
are used. Braces are normally used, especially to enclose a longer expres-
sion split over several lines. Parentheses are occasionally used to enclose

44 · Expressions

shorter sequences as part of other expressions. An implicit semicolon is
assumed after a closing brace but not after a closing parenthesis.
It is also possible to use indentation to construct sequences by enclosing
lines between the directives “#pile” and “#endpile”. In this context,
a group of consecutive lines indented by the same amount is called a
pile and is treated as a sequence. The precise rules for forming piles are
described in Section 22.3.

5.10
Exits

An exit expression has the form:
condition => E

When an exit expression appears as one of the elements of a sequence,
the condition is evaluated. If the condition evaluates to true then the
value of the sequence is the value of the expression E, and no further
components of the sequences are evaluated. If the condition evaluates to
false then evaluation continues with the next expression in the sequence.
So the expression:

{ a; b; c => d; e; f }

is equivalent to

{ a; b; if c then d else { e; f } }

In a sequence which contains an exit expression, the type of the expres-
sion E must be compatible with the type of the sequence, that is, with
the type of the final element of the sequence1. If a sequence contains
several exit expressions, the types of the possible exit values must all be
compatible.
If the condition is not of type Boolean, then an implicit application of
the function “test” is performed to convert the condition to the type
Boolean. (See Section 12.2.)
An exit expression transfers control; it does not, itself, produce a value.
As a result, the type of the exit expression is (), and so an exit expression
can only be used in a context which does not require a value. Examples:

#include "aldor"

import from Integer;

b: Integer := 1;

a := { n := b * b; n < 10 => 0; n > 100 => 100 ; n }

-- ‘a’ will be assigned the value ‘0’, corresponding to the
-- right hand side of the first ‘=>’

1In the current release of Aldor, this means that the types must be the same.

5.10. Exits · 45

Note that all of the exit values (i.e. “0” and “100”) have type Integer,
and the final element of the sequence also has type Integer.
A series of exit expressions is often a compact way to enumerate a list of
alternative cases:

#include "aldor"
#include "aldorio"

import from Integer;

power(base: Integer, exp: Integer): Integer == {
exp = 0 => 1;
exp = 1 => base;
exp = 2 => base * base;
exp = 3 => base * base * base;

val := 1;

for i in 1..exp repeat val := val * base;

val;
}

stdout << power(2, 0) << newline; -- Print ‘1’
stdout << power(2, 1) << newline; -- Print ‘2’
stdout << power(2, 2) << newline; -- Print ‘4’
stdout << power(2, 3) << newline; -- Print ‘8’
stdout << power(2, 9) << newline; -- Print ‘512’

Since any expression can appear after the “=>”, another sequence, which
may contain other exit expressions, can appear there:

#include "aldor"

import from Integer;

+++ If ‘a’ or ‘b’ is zero, then return 0;
+++ Otherwise return 1 if (a * b > 0), -1 elsewhere.
productSign(a: Integer, b: Integer): Integer == {

a = 0 => 0;
b = 0 => 0;
a < 0 => { b < 0 => 1; -1 }
b > 0 => 1;
-1

}

If an exit expression appears as a strict subexpression of an expression
other than a sequence, the exit expression is treated as a sequence of
length one:

if b < 0 then a > 0 => flag := false;

This example is treated as equivalent to:

if b < 0 then { a > 0 => flag := false }

46 · Expressions

5.11
If

Conditional branching in Aldor is provided by the if expression.

if condition then T
if condition then T else E

When an if expression is evaluated, the condition is evaluated. If the
condition evaluates to true then the value of the if expression is the
value of the expression T. If the condition evaluates to false and the
else clause is present, then the value of the if expression is the value of
the expression E. If the else clause is not present, then the if expression
returns no value.
An if expression used in a context which requires a value must have
both a then and an else branch. The types of the two branches must
be compatible, and the type of the expression is the type which is satisfied
by both branches.
In contexts which do not require a value, the types of the then and else
branch are independent. In this case, the type of the if expression is
taken to be the type of the empty expression, and it is possible to omit
the else branch altogether.
If condition is not of type Boolean, then an implicit application of the
function “test” is performed to convert condition to type Boolean.
(See Section 12.2)
Example:

#include "aldor"
import from MachineInteger;

foo(a: MachineInteger): MachineInteger ==
if a > 0 then a * a else 0

Note that if the else clause is not present, then the if expression cannot
be used in a context which requires a value:

-- This assignment is not type correct.
a : MachineInteger := if true then 1;

5.11. If · 47

5.12
Select

A select statement takes the form:

select E in {
V1 => E1;
V2 => E2;
...
En;

}

where E, E1, E2 and En are arbitrary expressions of the same type. V1,
V2 are also arbitrary expressions any do not have to be the same type.
The statement is interpreted as follows: for each option (V1, V2, ...) in
turn , the function case is called with the value of E as its first argument,
and the value of the option as the second argument. If the call to case
is true, then the code on the right of the => is executed. If no option is
satisfied, then the default code En is executed.
A select statement is type-correct if there exists case functions with
type (typeof(E), typeof(V)) -> Boolean for each V in (V1, V2, ...).
Given an appropriate case function, one can write:

select gcd(p, q) in {
0 => stdout << "gcd is zero";
1 => stdout << "gcd is one";
stdout << "gcd is complicated"

}

select getOption() in {
0 => option1();
1 => option2();

2..5 => optionX();
illegalOption();

}

Unions also export a case function, so one can do:

U ==> Union(var: Symbol, poly: Poly);
u: U := ...
select u in {

var => ...
poly => ...
never

}

5.13
Logical
expressions

Logical expressions in Aldor are provided using the following forms:

E1 and E2
E1 or E2
not E

48 · Expressions

An “and” expression is true if both E1 and E2 are true. If the first ex-
pression evaluates to false, then the second expression is not evaluated.
An “or” expression is true if E1 or E2 or both are true. If the first
expression evaluates to true, then the second expression is not evaluated.
A “not” expression is true if E is false.
If any of E1, E2 or E is not of type Boolean, then an implicit application
of the function “test” is performed to convert the value to type Boolean.
(See Section 12.2) The type of a logical expression is Boolean.
Examples:

#include "aldor"
#include "aldorio"

if true and false then stdout << "This string will not be printed.";

import from MachineInteger;

-- Define ‘test’ for MachineInteger: a null value returns false.
test(x: MachineInteger): Boolean == if x = 0 then false else true;

if 1 or 1 then stdout << "I can do this." << newline;

-- Define ‘test’ for String: an empty string returns false.
-- Note that ‘#s’ (‘the length of s’) uses
-- the previous test for MachineInteger.
test(s: String): Boolean == if #s then true else false;

if true and 1 and "I can do this, too." then
stdout << "This string will be printed." << newline;

The logical connectives “and”, “or” and “not” are syntactic elements of
the language that should not be confused with similar functions exported
from the type Boolean (/\, \/ and ~). The functional versions from
Boolean evaluate all of their arguments before computing their result,
and denote function values. The logical connectives cannot be used as
functions:

#include "aldor"
#include "aldorio"

import from List Boolean;

-- This expression will print: ‘[T,T,F]’
stdout << ((map ~) [false, false, true]) << newline;

but you cannot say: ((map not) [false, false, true]), since “not” is not
a function. The Aldor function “map”, defined for all BoundedFinite-
LinearStructureType types. In the case of Lists, “map” is defined as a
function taking a function (for example, “ ”) as an argument and return-
ing a function taking a “List” as an argument and returning a “List”.

5.13. Logical expressions · 49

5.14
Loops

Repeat The Aldor language provides a set of constructs to handle loops in a way
which is both elegant and efficient. The concept lying at the base of Aldor
loops is that of generator, discussed in depth in chapter 9. Generators
provide an abstract way to traverse values belonging to certain domains
without violating the principle of encapsulation (see Section 7.8, page 88).
Generators can be considered as autonomous entities producing values.
This section shows how values they produce can be used to control loops.
The general form of a loop expression is:

Iterators repeat Body
The iterators control how many times the body is evaluated. Any number
of iterators may be used on a loop, and each is either a “while” or a
“for” iterator.
A loop with no iterator repeats forever, unless terminated by an error or
some other event. For example:

#include "aldor"
#include "aldorio"

-- This will repeat forever...
repeat {

stdout << "Row, row, row your boat," << newline;
stdout << "Gently down the stream." << newline;
stdout << "Merrily, merrily, merrily, merrily," << newline;
stdout << "Life is but a dream." << newline;
stdout << newline;

}

Two forms, “break” and “iterate,” may be used within the loop body
to control the loop evaluation, as described later on pages 55 and 56.

While-iterators A “while” iterator allows a loop to continue so long as a condition re-
mains true. The syntax of a “while” iterator is

while condition
If a loop has a “while” iterator, then at the beginning of each iteration
condition is evaluated. The result is then tested:
• If it is true, the evaluation of the loop proceeds.
• If it is false, then the loop is terminated.

Just as with “if” and other expressions having tests for control flow, if
the condition of a “while” is not a Boolean value, then an appropriate
“test” function is applied to determine the sense of the condition.
The following example shows a repeat loop using a while iterator:

#include "aldor"

50 · Expressions

#include "aldorio"

import from Integer;

n := 10000;
k := 0; -- ‘k’ counts the number of iterations.

while n ~= 1 repeat {
k := k + 1;

if odd? n then n := 3*n + 1 else n := n quo 2;
}

stdout << "Terminated after " << k << " iterations." << newline;

This loop counts the number of times the body has to be evaluated in
order for n to reach one. When n reaches 1, the evaluation of the loop
is terminated, and the count is printed. (It is a well-known conjecture
that this process will terminate for all integers n > 0. This is sometimes
called the “3n+ 1 problem”.)
In a case such as this it is important to give k an initial value, since
the loop may be iterated zero times! In fact, if the while condition is
false the first time that it is evaluated, then the repeat body will be not
executed at all:

#include "aldor"
#include "aldorio"

import from Integer;

n := 0;

while n > 0 repeat {
-- This will never be executed.
stdout << "Hello world!" << newline;

}

For-iterators Very often, loops are used to traverse certain kind of data structures,
such as lists, arrays or tables, or to execute some operations for all the
numerical values in a defined range.
“for” iterators make this sort of loop convenient to write. Take, for
instance, the following examples:

#include "aldor"
#include "aldorio"

-- Add up the elements of a list, return the sum.
sum(ls: List Integer): Integer == {

n := 0;
for i in ls repeat n := n + i;
n

}

-- Add up the elements of an array, return the sum.
sum(arr: Array Integer): Integer == {

5.14. Loops · 51

n := 0;
for i in arr repeat n := n + i;
n

}

-- Add up the odd numbers in a range, return the sum.
sum(lo: Integer, hi: Integer): Integer == {

n := 0;
if even? lo then lo := lo + 1;

for i in lo..hi by 2 repeat n := n + i;
n

}

import from List Integer, Integer;

-- Use ‘sum: List Integer -> Integer’:
stdout << sum([1,2,3,4]) -- Prints ‘10’.

The “for” iterators in these examples all have the form
for lhs in Expr

The lhs part specifies a variable which will take on the successive values
over the course of the iteration. The lhs has the form

[free] name [: Type]
The type declaration is optional. If it is missing, the type of the variable
is inferred from the source of the values, Expr.
The “free” part of the lhs determines the scope of the variable. Without
it, a new variable of the given name is made local to the loop. If the
word “free” is present, then the loop uses an existing variable from the
context. In this case, the value of the variable is available after the loop
terminates.
The example on page 50 can be rewritten using a free loop variable:

#include "aldor"
#include "aldorio"

import from Integer;

n := 10000;
k := 0; -- Make a top-level variable ‘k’.

for free k in 1.. repeat { -- Use above ‘k’ freely in the loop.

if odd? n then n := 3*n + 1 else n := n quo 2;

if n = 1 then break; -- exit the loop if n = 1
}

-- Here the last value of ‘k’ is available.
stdout << "Terminated after " << k << " iterations." << newline;

The previous example uses the “break” construct explained later in this
section, on page 55. When a break is evaluated it causes the termination

52 · Expressions

of the loop. In this case, the break is the only exit point of the loop,
because we are iterating over an open segment, producing infinitely many
values: 1, 2, 3,
Now we turn our attention to the expression traversed by the “for”
iterator. In the examples, we have seen
• a list, “ls”,
• an array, “arr”, and
• integer segments, “lo..hi by 2” and “1..”.

In general, the “for” iterator expression must have type Generator T ,
where T is the type of the “for” variable. If the expression is not of
this type, then an implicit call to “generator” is inserted. Any visible
generator function of an appropriate type will be used. See chapter 9
for a description of generators and how to create new ones.
The examples we have seen work because the list, array and segment
types provided by libaldor export generator functions.
There is a second form of “for” iterator which filters the values used.
This has the form:

for lhs in Expr | condition

5.14. Loops · 53

This kind of “for” iterator skips those values which do not satisfy the
condition. For example, the sum example we saw earlier could have been
written as:

#include "aldor"

-- Add up the odd numbers in a range
sum(lo: Integer, hi: Integer): Integer == {

n := 0;
for i in lo..hi | odd? i repeat n := n + i;
n

}

Multiple iterators A “repeat” loop may have any number of iterators, with the following
syntax:

iterator1 ... iteratorn repeat Body
The loop is repeated until one of the iterators terminates it: the first
“while” which has a false condition or the first “for” which consumes
all its values ends the loop.
This is convenient when the termination condition does not relate directly
to a “for” variable, or when structures are to be traversed in parallel.
Continuing the example on page 52, we may use a “while” to decide if
the end has been reached, and, at the same time, use a “for” to count
the number of times we have evaluated the loop body:

#include "aldor"
#include "aldorio"

import from Integer;

n := 10000;
k := 0;

while n ~= 1 for free k in 1.. repeat
if odd? n then n := 3*n + 1 else n := n quo 2;

stdout << "Terminated after " << k << " iterations." << newline;

Multiple “for” iterators can allow lists to be combined in an efficient
way:

#include "aldor"
#include "aldorio"

import from List Integer, Integer;

l1 := [1,2,3];
l2 := [8,7,6,5];

-- Add the pair-wise products in two lists.
x := 0;
for n1 in l1 for n2 in l2 repeat

x := x + n1 * n2;

stdout << "The result is " << x << newline

54 · Expressions

These two “for” iterators are used in parallel, like a zipper combining
the two lists. The loop stops at the end of the shortest list, in this case
giving a sum of three products.
This is not a double loop – to use all pairs with the number from l1 and
the second number from l2, you would use two nested loops, each with
its own “repeat”:

#include "aldor"
#include "aldorio"

import from List Integer, Integer;

l1 := [1,2,3];
l2 := [8,7,6,5];

x := 0;
for n1 in l1 repeat

for n2 in l2 repeat
x := x + n1 * n2;

stdout << "The result is " << x << newline

Using more than one iterator is often the most efficient natural way to
write a loop. A loop with two “for” iterators is more efficient than

...
m: MachineInteger := min(#l1, #l2);
for i in 1..m repeat

x := x + l1.i * l2.i

because it does not need to traverse the lists each time to pick off the
desired elements. And the code is more concise than

...
t1 := l1;
t2 := l2;
while (not empty? t1 and not empty? t2) repeat {

x := x + first t1 * first t2;
t1 := rest t1;
t2 := rest t2;

}

Break Evaluating a “break” causes a loop to terminate. For example:

#include "aldor"
#include "aldorio"

import from Integer;

n := 10000;
k := 0; -- ‘k’ counts the number of iterations.

5.14. Loops · 55

repeat {
if odd? n then n := 3*n + 1 else n := n quo 2;

k := k + 1;

if n = 1 then break;
}

stdout << "Terminated after " << k << " iterations." << newline;

“break” is most useful when the condition which quits the loop falls
most naturally in the middle or at the end of the loop body. Sometimes
it is possible to change a test which appears at the end to a test at
the beginning. This helps make programs more readable, since one sees
immediately what will cause the loop to end. Also, it allows the exit to
be controlled by a “while” iterator, rather than an “if” and a “break”.
If a “break” occurs inside nested loops, it terminates the deepest one.

Iterate Evaluating an “iterate” abandons the current evaluation of the loop
body and starts the next iteration. For example:

#include "aldor"
#include "aldorio"

import from Integer;

n := 10000;
k := 0; -- ‘k’ counts the number of iterations.

repeat {
k := k + 1;
if odd? n then { n := 3*n + 1; iterate }

n := n quo 2;
if n = 1 then break;

}

stdout << "Terminated after " << k << " iterations." << newline;

This example does the same thing as the previous one, but is organised
slightly differently. The “iterate” on the second line of the loop body
causes the rest of the body to be skipped.
“iterate” can be used instead of placing the remainder of a loop body
inside an “if” expression. This can make programs easier to read, by
emphasising that certain conditions are not expected, and by avoiding
extra levels of indentation. It is particularly useful when the decision to
go on to the next iteration of a loop is buried deep inside some other
logic, rather than appearing at the top level of the loop body.
An “iterate” is equivalent to a “goto” branching to the end of the loop
body. Thus, the meaning of “iterate” is independent of whether there
are any “while” or “for” iterators controlling the loop.
If an “iterate” occurs inside nested loops, it steps the deepest one.

56 · Expressions

Definition in
low-level terms

It is possible to express the loop behaviour in terms of gotos and labels
(see section 5.17 for details). A loop of the form

it1 it2 ... itn repeat Body

is equivalent to
{

init1; init2; ... initn;
@TOP
step1; step2; ... stepn;
Body;
goto TOP;
@DONE

}

Where, if iti is “while condi”, then initi is empty and stepi is
if not condi then goto DONE

if iti is “for lhsi in expri | condi”, then initi is
gi := generator expri;

and stepi is
step! gi;
if empty? gi then goto DONE
lhsi := value gi
if not condi then goto TOP

(a “for” without a condition is treated as if it had the condition
“true”).
In this, TOP, DONE and the gi are generated names, and are not accessible
to the other parts of the program.

5.15
Generate
expressions

Generate expressions are used to create generators. For a complete de-
scription of how to use generate to create a generator, see chapter 9.
The general syntax for a generate expression is:

generate E
generate to n of E

E is an expression which represents code which will be evaluated each
time a value is extracted from the generator. Evaluation begins at the
start of the expression E and continues until an expression of the form

yield v

is processed, where v is the value to be passed back to the context which
is collecting values from the generator. Each time a value is requested

5.15. Generate expressions · 57

after the first value is yielded, control resumes after the yield expression
which produced the previous value.

5.16
Collections

A collect expression provides a convenient shorthand for creating gener-
ators and aggregate objects. A collect expression has the form:

E iter1 . . . itern

where n ≥ 1. The iteri are iterators, as described in Section 5.14. Con-
sider the following example:

#include "aldor"
#include "aldorio"
...
import from Integer, List Integer;
stdout << [x*x for x in 1..10] << newline;
stdout << [x*y for x in 1..10 for y in 10..1 by -1] << newline;

This program creates a list of the squares of the integers from 1 to 10,
and then a list of products of integers. Note that while can form an
iterator, and can therefore be used in a collect expression.
Note that the square brackets are not part of the collect expression, but
are simply a shorthand for a call to the function “bracket”, with the
value of the collection as an argument. The domain “List Integer”
from the Aldor base library exports a function with the signature
bracket: Generator Integer -> %, which is called twice in the above
example.
As collect expressions produce generators, one would expect that gener-
ate expressions and collect expressions are related. The collect expres-
sion:

E iter1 . . . itern

is equivalent to the generate expression:
generate iter1 . . . itern repeat yield E

Thus, x*y for x in 1..9 for y in 9..1 by -1 is the same as:
generate for x in 1..9 for y in 9..1 by -1 repeat yield x*y

Collect expressions provide a convenient notation for creating new ag-
gregates, and require no additional functionality in the language.

58 · Expressions

5.17
General
branching

Aldor provides unconditional branching using label expressions and goto
expressions. A label expression is of the following form:

@L E

where L is an identifier known as the label name, and E is any expression.
The type of the label expression is the same as the type of E. Names
which are used as labels have no relationship with variables or constants
of the same name, and a label name may also be used as a variable
or constant. A label name obeys the same scope rules as constants or
variables, but may not appear in any expressions other than gotos and
other label expressions. Since labels are constants, it is an error to bind
the same label twice in the same scope.
A goto expression has the following form:

goto L

where L is the name of a label. After the evaluation of a goto expression,
execution resumes with the expression associated with the label L. The
type of the goto expression itself is the type Exit.
The label must appear in the same function body as the goto. In addi-
tion, it is an error for a goto to branch into an inner scope of the scope
in which it appears (that is, a local function or any repeat or collection
including a for, where, add or with expression). A goto may also not
branch out of a function or a with or add expression.
Example:

foo(a: MachineInteger): MachineInteger == {
if a <= 0 then goto ERROR;

return a * a;

@ERROR
stdout << "The argument must be a positive value!" << newline;
0

}

If the first test is successful, then the “return” expression is skipped and
the execution proceeds on the line following “ERROR”.
Labels can also be defined at the top level of a file, since the top level of
a file is treated as a sequence:

#include "aldor"
#include "aldorio"

@LAB1
stdout << "You will see this forever..." << newline;
goto LAB1;

5.17. General branching · 59

5.18
Never

The expression “never” is a special value, of type Exit, which acts as
a programmer-supplied assertion that execution will never reach that
point. An exit expression can be useful as it may allow a program to be
translated into more efficient code.
The following Aldor code is a possible use of never

s := {
x = 0 => "zero";
x > 0 => "positive";
x < 0 => "negative";
-- This expression is unreachable
never

}

With luck, the “never” at the end of the sequence will not be reached
in any execution of the program. (If it is reached, Aldor will complain
“Aldor error: Reached a "never"”).

60 · Expressions

CHAPTER 6

Functions

Functions lie at the heart of Aldor: typical expressions consist mostly of
function calls.
Much of what is done by ad hoc means in other languages is done in Aldor
through normal functions. It is the job of the compiler to ensure that
relying on functions in this way does not adversely affect performance.
This chapter describes how to define and use functions, beginning with
typical examples of function definition and application, then describing
more specialized features, including keyword arguments, default argu-
ments, function expressions (also called “anonymous functions”), and
curried functions.

6.1
Function
definition

A typical function definition has the following form:

f (s1: S1, ..., sn: Sn) : T == E

This definition has a number of parts:
• the function name, f
• the formal parameter names, s1,...,sn
• the formal parameter types, S1,...,Sn
• the return type, T, and
• the function body , E.

The function name is an identifier which will be used to denote the
function. In a given scope there may be more than one functions with
the same name; in this case the function name is said to be overloaded .
The formal parameter names are identifiers which are used to refer to
the values passed to the function as arguments. The formal parameter

61

names are visible in the body of the function, in the types of the formal
parameters, and in the return type (See Section 8.12).
The formal parameter types are type-valued expressions (e.g. “Integer”
or “SquareMatrix(n+m, Complex Float)”) which specify what type of
value is expected as the corresponding actual argument to the function.
The return type is a type-valued expression which specifies the type of
the value computed by the function.
The function body is an expression which, when evaluated, produces the
return value of the function. The type of the value returned by the
function body must be compatible with the given return type.
More elaborate forms of function definitions are described in sections 6.4
and 6.6.

Multiple return
values

Just as functions can take any number of parameters, they may also
return any number of results. The typical function definition given above
is a special case of the more general form:

f (s1: S1, ..., sn: Sn) : (t1: T1, ..., tm: Tm) == E

Now in place of a single return type we have:

• the return names, t1,...,tm, and
• the return types, T1,...,Tm.

This function definition takes n arguments and returns m results.
The return names are identifiers which can be used to refer to the values
returned from the function. The return names are visible in the types of
the return values.
The return types are type-valued expressions which specify the type of
the corresponding value returned from the function.
Any or all of the return names may be omitted, in which case the ith
return declaration would read “Ti”, rather than “ti: Ti”.
When a function has no formal parameter or no return value an empty
pair of parentheses is used as the formal parameter list or return value
list. For example, the following function takes no parameter and returns
no result:

f () : () == E

Return expressions Inside the body of a function definition, a return expression is used to
explicitly pass control back to the calling environment and to return
values from the function. The general form of the return expression is:

return E

62 · Functions

The value of the expression “E” is returned as the value of the function.
The type of “E” must be compatible with the declared return type of the
function. The return expression itself has type “Exit”.
Inside a function which returns more than one value the return expression
may explicitly supply more than one value:

return (v1, ..., vn)

Inside a function which returns no value, an empty return expression
may be used:

return

Since the value of the function body is used as the value of the function,
in many cases an explicit return expression is unnecessary:

f (n: Integer) : Integer == if n < 1 then 1 else n * f(n-1)

The value returned by the function “f” is the value returned by the “if”
expression. An explicit “return” is not needed.

6.2
Function
application

A typical (prefix) function application has the following form:

f (a1, ..., an)

This form of function application has the following parts:
• the function, f, and
• the actual parameters, a1,...,an.

The function is an expression which denotes the function to be called.
In general, “f” can be any expression whose value is a function.
The actual parameters are expressions which specify the values to be
passed as arguments to the function. The types of the actual parameters
must be compatible with the type of the function “f”.
As discussed in Section 5.8, the order of evaluation of the actual argu-
ments in an application is not defined. More elaborate forms of function
application are developed in sections 6.3, 6.5 and 6.6.
When a function takes no parameter, an application of that function
must have as its actual parameters an expression which produces no
value. Often, such an application takes the following form:

f ()

6.2. Function application · 63

Other application
notations

In addition to the normal prefix application notation there are a small
number of special syntactic forms in Aldor denoting function application.
The general reason behind these rules is to make programs more readable.
For example there is a set of infix operators (see Section 4.4), so that you
can write “a + b” instead of “+(a,b)”. Furthermore, some language
forms cause implicit application of functions:
• the treatment of literal values,
• the application of one object to another,
• the updating of objects,
• the interpretation of tests in conditional statements
• the mechanism for generating a set of values for iteration.

Refer to chapter 12 for a more detailed description of these forms.

6.3
Keyword
arguments

Consider the following function definition:

-- Compute a point on the line with slope ‘m’ and intercept ‘b’.
line(x: DoubleFloat, m: DoubleFloat, b: DoubleFloat): DoubleFloat ==

m*x + b;

Because all the parameters have the same type, it may be difficult to
remember which one is which. As a result, the meaning of a call such as

line(3.2, 8.2, 1.0);

might not be readily apparent.
One way to increase the readability of such a program is to place the
arguments in named variables before calling the function:

slope := 8.2;
intercept := 1.0;

line(3.2, slope, intercept);

But this approach needlessly increases the number of variables used by
the program. In addition, now the values for the slope and intercept
are not explicitly visible at the call point. So one sort of unreadabil-
ity has been exchanged for another (and remembering the order of the
parameters is no easier than before).

Keyword
arguments

An alternative in Aldor is to allow the actual arguments in an application
to be supplied by name using keyword arguments. For example:

line(3.2, b == 1.0, m == 8.2);

An actual argument in this form of application has the following parts:

64 · Functions

• the formal parameter name, (e.g. b),
• the double-equal symbol “==” and
• the actual parameter value, (e.g. 1.0).

The formal parameter name is an identifier which must match one of the
formal parameter names given in the definition of the function.
The actual parameter value is then used as the value of the formal param-
eter with the same name, regardless of its position in the actual argument
list in the function application. The type of the actual parameter value
must match the type of the formal parameter with the same name.
Any parameters supplied as keyword arguments must appear after any
arguments supplied by position alone. It is an error if any of the formal
parameters is not supplied with a value, either as a positional argument
or by using a keyword argument.

6.4
Default
arguments

In a programming language where function names may not be overloaded,
such as Lisp or C, some functions are written to take a variable number
of arguments. When these functions are called, they decide which argu-
ments they have been passed and what to do about the missing ones.

In a language such as Aldor, where function names may be overloaded,
there are often several functions visible with the same name. Which
function to use is decided on the basis of the number of actual arguments
supplied and their types, and possibly on the type of the return value
required by the context of the function application.
So, instead of writing functions which take a variable number of argu-
ments, in Aldor we are allowed to write several functions with the same
name, each with a fixed number of arguments. One advantage of doing
this is that the decision on which function to call can be made once, at
compile time, whereas code in the body of the function, to supply missing
arguments, would be exercised in each time the function was run.
So, continuing the example from Section 6.3, we can write:

-- Compute a point on the line with slope ‘m’ and intercept ‘b’.
line(x:DoubleFloat, m:DoubleFloat, b:DoubleFloat):DoubleFloat ==

m*x + b;

-- Assume a default intercept of ‘0’.
line(x:DoubleFloat, m:DoubleFloat):DoubleFloat == line(x, m, 0);

Soon afterward, however, we want to give other arguments default val-
ues. Then the number of functions needed increases exponentially in the
number of arguments which are to have default values.
Another problem arises when arguments have the same type: it is not

6.4. Default arguments · 65

always possible to overload the function name enough to provide each
argument with a default value.
For these reasons, languages with name overloading sometimes provide
an explicit way to supply default values to named parameters.

Default arguments In Aldor, default values for named parameters can be supplied in the
definition of a function using the following form:

f (s1: S1 == v1, ..., sn: Sn == vn) : T == E

This form of function definition has the following additional part:
• the default argument value specifications, in which “==” (the

double-equal symbol) introduces each of the default argument val-
ues, v1,...,vn.

The default argument values are expressions which, when evaluated, pro-
duce values, each of which can be used as the corresponding argument
to the function. The type of the default value for a parameter must be
compatible with the corresponding parameter type.
Any or all of the default argument values may be omitted, in which
case the form of the ith formal parameter would read “si: Si” instead
of “si: Si == vi”. A function definition which supplies a default argu-
ment value for one of its parameters must also supply a default argument
value for each of the following parameters.
Once again continuing the example given above, we can now define a
single function which allows any combination of its final two arguments
to be omitted:

-- Compute a point on the line with slope ‘m’ and intercept ‘b’.
-- The default slope is 1, and the default intercept is 0.

DF ==> DoubleFloat;

line(x: DF, m: DF == 1, b: DF == 0) : DF == m*x + b;

This definition supplies a default value of “1” for “m”, and a default value
of “0” for “b”. Some example applications of the function “line” are as
follows:

x: DoubleFloat := 3.2;

stdout << line(x, 8.0) << newline; -- 8.0 * x + 0
stdout << line(x) << newline; -- 1 * x + 0
stdout << line(x, b == 5.0) << newline; -- 1 * x + 5.0

In an application of a function whose definition supplies default argument
values, it is an error if any of the formal parameters is not supplied with a
value, either as a positional argument, or by using a keyword argument,

66 · Functions

or by using the default argument value supplied (if any) for that formal
parameter. The default argument values are evaluated, if and when they
are used in a function application, as the other actual parameters are
evaluated. As discussed in Section 5.8 the order of evaluation of the
actual arguments to an application is not defined.

6.5
Function
expressions

Function expressions are the primitive form for building functions in
Aldor. The general form for a function expression is:

(s1: S1 == v1, ..., sn: Sn == vn) : (t1: T1, ..., tm: Tm) +-> E

The syntax “(s: S) : T +-> E(s)” for a function expression is in-
tended to resemble the mathematical notation s 7→ E(s) for a function
specification. The infix keyword “+->” denotes the λ operator from a
typed lambda calculus. A function expression has many of the same parts
as a function definition, including the formal parameter names/types, the
return names/types, the function body (see Section 6.1), and default ar-
guments (see Section 6.4).
When a function expression is evaluated, it captures the lexical environ-
ment in which it appears, creating a lexical closure. The values of the
variables which are visible in the scope of the function expression are
then available when it is eventually applied to a set of arguments.
More typical cases of function expressions are formed in much the same
way as the corresponding cases of function definitions. For example, the
expression:

(f: Integer -> Integer, n: Integer) : Integer +->
if n < 1 then 1 else n * f(n-1)

represents an integer function of two arguments which bears some super-
ficial resemblance to a factorial function.
Since a function expression has the same parts as a function definition
except for the name, function expressions are sometimes known as anony-
mous functions. Function expressions are also known as lambda expres-
sions in many programming languages.

Function types Like any other expression, a function expression can be assigned a type.
The type assigned to a function expression is called a function type. A
function type is formed with the infix keyword “->”:

(s1: S1 == v1, ..., sn: Sn == vn) -> (t1: T1, ..., tm: Tm)

The syntax “S -> T” for a function type is intended to be reminiscent of
the mathematical notation S → T for a set of functions. A function type

6.5. Function expressions · 67

has many of the same parts as a function definition, including the formal
parameter names/types, the return names/types (see Section 6.1), and
default arguments (see Section 6.4).
For function types, any or all of the formal parameter names may be
omitted, in which case the ith parameter declaration would read “Si”
rather than (in the most general case) “si: Si == vi”.
The type of “f”, (“Integer -> Integer”), in the function expression
shown previously, is a typical example of a function type. Any function
expression which takes one integer argument and returns one integer
result is a member of this type.
The ability to include the formal parameter names and default arguments
in the specification of the type is useful when using keyword arguments
(see Section 6.3), default arguments (see Section 6.4), and dependent
types (see Section 14.2).

Function
definition revisited

The typical form for a function definition given in Section 6.1 is really
just a shorthand for the following equivalent definition:

f : (s1: S1, ..., sn: Sn) -> T == (s1: S1, ..., sn: Sn) : T +-> E

This form makes it easier to see that function definitions are the same
as definitions of any other values. Specifically, the expression:

n : Integer == 8

defines a type (“Integer”) and a value (“8”) for the identifier “n”. In
the same way the function definition:

f (n: Integer) : Integer == if n < 1 then 1 else n * f(n-1)

which can also be written as:

f : (n: Integer) -> Integer ==
(n: Integer) : Integer +-> if n < 1 then 1 else n * f(n-1)

defines a function type (“(n: Integer) -> Integer”) and a function
expression for the identifier “f”.

Function
application
revisited

Since function expressions evaluate to functions, they can be used in the
place of the function name in a function application:

((n: Integer) : Integer +-> if n < 1 then 1 else n * (n-1))(5);

This way of calling function expressions may be rather verbose. However,
function expressions can also be assigned to local variables:

68 · Functions

g := (n: Integer) : Integer +-> if n < 1 then 1 else n * (n-1);
g(5);

So once again we see that a typical function definition is merely a spe-
cial case of a more general framework, based on the fact that function
expressions can be used just like any other expression.

6.6
Curried
functions

Since function expressions can be used just like any other expression, we
can write a function which returns a function as its result:

DF ==> DoubleFloat;
line (m: DF, b: DF) : (x: DF) -> DF ==

(x: DF) : DF +-> m*x + b

The function “line” is a function which has two formal parameters,
and which returns a function of one formal parameter. The type of the
function returned by “line” is “(x: DoubleFloat) -> DoubleFloat”.
A function which returns a function as its result is called a curried func-
tion, after Haskell Curry, a significant contributor to the theory behind
functional programming1.
To simplify the definition of curried functions in Aldor, two shorthand
notations are provided.

Function
expressions
revisited

First, we generalise the syntax of function expressions (see Section 6.5)
by inductively defining the curried function expression

(s1: S1) ... (sn: Sn)(s0: S0) : T +-> E

to be equivalent to the expression

(s1: S1) ... (sn: Sn) : (s0: S0) -> T +-> (s0: S0) : T +-> E

In the definition above, we have assumed a single formal parameter within
each set of parentheses and a single return type, to simplify the expo-
sition. Note that “->” and “+->” associate from right to left and that
“->” groups more tightly than “+->”.
Using the equivalent method of writing function definitions, given in
Section 6.5, and applying this shorthand to the right-hand side, the def-
inition of the function “line” given above can be written as:

DF ==> DoubleFloat;
line : (m: DF, b: DF) -> (x: DF) -> DF ==

(m: DF, b: DF)(x: DF) : DF +-> m*x + b;

1See, for instance, Combinatory Logic, Curry and Feys, North Holland, Amsterdam
1958.

6.5. Function expressions · 69

Note that the function “line” is still a function which has two formal
parameters, and which returns a function of one formal parameter. The
only additional notation used here is the curried function expression used
to define the value of “line”. An expression for “line” can be written
without using a curried function expression, but the shorter form is more
convenient.

Function
definition revisited

As a second shorthand for defining curried functions, we define the cur-
ried function definition

f (s1: S1) ... (sn: Sn) : T == E

to be equivalent to the expression
f : (s1: S1) -> ... -> (sn: Sn) -> T ==

(s1: S1) ... (sn: Sn) : T +-> E

Continuing the example from the previous paragraphs, we can now ex-
press the definition of the function “line” in its most convenient form:

DF ==> DoubleFloat;
line (m: DF, b: DF)(x: DF) : DF == m*x + b;

As a further example, if we define exponentiation for MachineInteger
functions of a MachineInteger as follows:

MI ==> MachineInteger;
(f:(MI->MI))^(n:MI) : (MI->MI) == {

n = 0 => (x:MI):MI +-> x;
n = 1 => f;
(x:MI):MI +-> f((f^(n-1))x);

}

an alternative notation could be defined, using the curried function con-
ventions, as:

multApply(n:MI,f:(MI->MI)):MI->MI == f^n

Function
application
revisited

The application of curried functions to their arguments needs no addi-
tional machinery: a curried function is just a function which returns a
function, and any expression (including the result of a function applica-
tion) can be used as a function as long as the actual parameters to the
application are compatible with the type of the function. For example:

#include "aldor"
#include "aldorio"
DF ==> DoubleFloat;
import from DF;

line(m: DF, b: DF)(x: DF): DF == m*x + b;

stdout << "f(x) is x - 1" << newline;

stdout << "f(1.0) = " << line(1,-1)(1.0) << newline;
stdout << "f(2.0) = " << line(1,-1)(2.0) << newline;
stdout << "f(3.0) = " << line(1,-1)(3.0) << newline;

70 · Functions

So in the application “line(1,-1)(1.0)”, the curried function “line”
is applied to the arguments “1” and “-1”, which returns a function of
one argument, which is applied to the argument “1.0”.
As a result, we can use the “line” function in this example to create
other functions:

#include "aldor"
#include "aldorio"
DF ==> DoubleFloat;
import from DF;

line(m: DF, b: DF)(x: DF): DF == m*x + b;

f := line(1, -1);
stdout << "f(x) is x - 1" << newline;

stdout << "f(1.0) = " << f(1.0) << newline;
stdout << "f(2.0) = " << f(2.0) << newline;
stdout << "f(3.0) = " << f(3.0) << newline;

When we supply in this way only some of the arguments to a function,
the result is a new function related to the original. This technique is
a basic feature of functional programming, and is known as currying a
function.
Some languages provide an automatic conversion of functions of type
(A, B) -> C to functions of type A -> B -> C. This automatic conver-
sion is not done in Aldor. When desired, this conversion can be made
explicitly with a function expression:

#include "aldor"
#include "aldorio"
import from Integer;

I ==> Integer;

-- Curry the function ‘*’
ctimes == (a: I)(b: I) : I +-> a * b;
times3 == ctimes 3;

stdout << "3 * 2 = " << times3 2 << newline;

-- Convert general functions:
curry(f: (I, I) -> I)(a: I)(b: I) : I == f(a,b);

stdout << "3 + 2 = " << curry(+)(3)(2) << newline;

6.5. Function expressions · 71

CHAPTER 7

Types

This chapter describes the world of types in Aldor.
To use Aldor effectively, it is important to understand how to make type
declarations. Type declarations allow one to write the same sorts of
programs that one can write in C or Fortran. The base libraries provide
a rich set of types and constructors, sufficient for many purposes. The
chapter begins by describing how to create simple type expressions for
declarations.
To take fuller advantage of Aldor, it is useful to understand how to create
new types and environments. In this area, Aldor provides considerably
more power than other programming languages. The remainder of the
chapter explains the language primitives for forming new environments
and shows how they may be used to provide parameterised types and
packages.

7.1
Why types?

Values are ultimately stored in a computer as sequences of bits. A given
sequence of bits, however, can have different interpretations when used
by different programs.
For example, on one computer the 32 bits

01000101011010000011111100000000

can represent

• the integer 1164459776,
• the floating point number 3.7159375× 103, and
• the character string "Eh?".

A type provides an interpretation of binary data as a value which a pro-
gram can manipulate. Different programming languages have different

73

ways to associate types with data.

Types on Data: Some languages, such as Lisp, incorporate types in
values, augmenting the representation of a value with extra bits
encoding the type. In such languages, each data value is self-
identifying. The implementation of the bits which encode the type
can be done either in hardware or software. One goal of optimis-
ing compilers for these languages is to determine cases when it is
possible to avoid storing and checking these type codes.

Types on Variables: Other languages, such as Fortran-77, associate
types with variables, either via declarations or by implicit rules.
Associating a type with each variable requires less optimisation to
be efficient, but can be less flexible than the previous approach.
Also, this method can provide a greater degree of safety, since cer-
tain mistakes can be detected before program execution.

Types on Faith: Finally, some languages, such as B, a predecessor of
C, have different operations to interpret data in different ways. Any
data value can be used in any operation, and it is the responsibility
of the programmer to get things right. For example, one operation
will interpret a set of bits as pointer and another will interpret it
as an integer.

Most modern programming languages associate types with values, with
variables or both.
Object-oriented programming languages tend to adopt the “Types on
Data” approach. Variables might be declared to belong to certain
classes, but objects generally carry type information in the form of
object-specific methods. Some object languages, such as C++, achieve
efficiency by treating primitive and non-primitive types differently. The
programmer must constantly remember the difference — for example, it
is not possible to derive new classes from int or char *. Other object
languages uniformly pair types with data values, giving what is some-
times called “objects all the way down.”
Aldor, on the other hand, adopts the “Types on Variables” approach,
and values are not normally self-identifying. This approach allows uni-
form, efficient treatment of primitive and program-defined types. The
flexibility that we have come to expect from object systems is obtained
by promoting types to be first-class values.
Treating types as first-class values leads to a greater versatility than
typical object systems. For example, programs may be parameterised
by types provided at execution time. Many values may be declared as
belonging to exactly the same execution-time type, or to types having
some defined relationship. Combining operations can be made safe with-
out requiring execution-time tests. The usual sort of object behaviour
is easily recaptured. For example, self-identifying data may obtained by
incorporating types in the values.

74 · Types

7.2
Type
expressions

Expressions in Aldor may compute values which are types. For example,
all of the expressions in bold face in the program below produce type
values:

#include "aldor"

import from DoubleFloat;

i := Integer;
l := List Integer;
af: Array DoubleFloat := [1.0, 2,0, 3.0];

myfun(T: PrimitiveType): PrimitiveType == Array T;

mytype := myfun DoubleFloat;

In this example we see a number of expressions computing type values,
some of which are assigned to variables, others passed as parameters,
and still others used in declarations. Type values are typically formed
by applying type-constructing functions to values of one sort or another.
Certain kinds of types in Aldor are used in specific ways.
A domain is a type which defines a collection of exported symbols. The
symbols may denote types, constants and functions. Many domains also
define an interpretation for data values, called a representation type; these
domains are also known as abstract data types. Those domains which are
not abstract datatypes are called packages.
A category is a type which specifies information about domains, including
the specification of the public interface to a domain, which consists of
a collection of declarations for those operations which may be used by
clients of the domain.
The next several sections describe properties of types, which are com-
mon to all types. Section 7.8 describes those properties of types which
are specific to domains, packages and abstract datatypes. Section 7.9
describes properties of categories.
The language defines a number of types and type-constructing functions.
These are described in chapter 14. Most programs also use types or
type constructors from various libraries. Section 15.2 describes standard
libraries used with Aldor.

7.3
Type
context

Whereas any expression may be used to compute a type value, there
are certain contexts in which a type is required . These contexts are
indicated by T in the following expressions (details of which may be
found by consulting the index):
• ... : T declaration
• ... :* T declaration

7.3. Type context · 75

• ... $ T selection
• ... :: T type conversion
• ... @ T type constraint
• ... pretend T type lie
• T with ... primitive type former
• T add ... primitive type former
• import ... from T bring names into scope
• inline ... from T allow program dependency
• export ... from T export names from scope
• export ... to T export names to foreign environment

We say that the expression T is in type context .
Type context is special in two ways:
• Expressions occurring in type context are not guaranteed to be

evaluated in any particular order, or even evaluated at all.
• Identifiers occurring in an expression, T , appearing in type context

must be constant in the scope in which T occurs.
Type evaluation The reason expressions in type context are not guaranteed to be evalu-

ated in order, or at all, is to give maximum flexibility to produce efficient
programs. A portable program will only use non-side-effecting expres-
sions in type context.
The expressions occurring in type context should be viewed as an anno-
tation of a program rather than as part of the computation. For instance,
the same program may be written with declarations, type restrictions and
selections being inferred or explicit in varying degrees. So the program

#include "aldor"
#include "aldorio"
import from Integer;

n := 2 + 2;

stdout << n << newline

has the same meaning as

#include "aldor"
#include "aldorio"
import from Integer;

n: Integer := 2 +$Integer 2;

stdout << n << newline

which has the same meaning as

76 · Types

#include "aldor"
#include "aldorio"
import from Integer;

I ==> Integer;

n: I := (+$I @ (I,I) -> I) (2@I, 2@I);

stdout << n << newline

Name constancy As a related but more fundamental concern, an expression in type context
must only contain names which are constant over the scope in which
the type occurs, because, without this rule, it would not be possible to
associate well-defined types to expressions.
Consider the following incorrect function, which uses a domain called
MachineIntegerMod (see AXIOMimodnSample for a definition) which is
parameterised by an Integer:

f(n: Integer): () == {
local a, b: MachineIntegerMod(n);

a := coerce((3 * n + 1) quo 2);
b := coerce((5 * n + 1) quo 3);

if n > 4 then n := n + 1; -- This line is ILLEGAL!

c := a - b;

stdout << "The result is " << c << newline
}

The problem is that if n is updated, the type of a and b is no longer valid
and there is no reasonable interpretation for “-” or “c”.
The names appearing in an expression in type context may be
• defined via “==”,
• imported via “import”, or
• function parameters which are nowhere updated.

7.4
Dependent
types

In many programming applications it is not possible to determine the
specific type of a family of related types, that an expression will have,
until it is evaluated. There are a number of possible ways to treat this
situation:
Solution 1: Forget the type information.

If it is known that the result is some kind of stored structure, then pretend
it is a Pointer.
This solution has obvious drawbacks:

7.4. Dependent types · 77

• The private representation information known about the result is
compromised, creating a source-code dependency which can be dif-
ficult to manage.
• The result might not really be a pointer — it might be an inte-

ger, a floating point number or something else which uses memory
differently.
• Mistakes are more difficult to detect.

Solution 2: Use a Union type.

If there is a fixed set of possible result types, then one could return a
Union type which includes the lot.
This solution is only acceptable when the set of types is fixed and the
logic associated with each case is relatively distinct. If the different cases
are treated in essentially the same way, then this solution encourages a
programmer to treat the various union branches with the same code.
Solution 3: Use an Object-Oriented approach.

One can associate the dynamic type of the value with the value itself.
If the different possible types are to be handled in essentially the same
way, then this solution can be a reasonable choice. The type information
associated with the value can carry the functions which may be used to
operate on it.
One difficulty with this solution is that it is not possible to indicate when
many values belong to the same dynamic type, leading either to unsafe
code, or to testing tags during program execution.
Solution 4: Use Dependent Types

A dependent type is a type T in which the type of one subexpression of
T depends on the value of another.
Dependent types allow compile-time type checking for values whose types
depend on other values which will only be present during program
execution. This powerful tool is not often provided in other programming
languages. In Aldor, it is a basic feature of the language which allows a
great deal of flexibility in supporting various programming paradigms.

Dependent types Consider the following example:
#include "aldor"
#include "aldorio"

sumlist(R: ArithmeticType, l: List R): R == {
s: R := 0;
for x in l repeat s := s + x;
s

}

import from List Integer, Integer, List SingleFloat, SingleFloat;

stdout << sumlist(Integer, [2,3,4,5]) << newline;
stdout << sumlist(SingleFloat, [2.0, 2.1, 2.2, 2.4]) << newline;

78 · Types

The type of the parameter “l” and the type of the result of the function
each depend on the value of the parameter “R”.
Because of this dependency, we say that the type of sumlist is a depen-
dent type, in this case the dependent mapping type

(R: ArithmeticType, l: List R) -> R

Note that within sumlist it was known that all the elements of the list
l had type R. The “+” operation does not need to make any run-time
checks to verify that both of its operands are of the same type.
Dependency is a relationship among values which arises because of the
occurrence of one value in the type of another. In Aldor, dependencies
between values are allowed in the following contexts:
• function parameters
• function results
• cross product values
• signatures in a category with-expression

In addition, the function result types are allowed to depend on the values
of the function parameters.

Uses and examples Dependent types allow parametric polymorphism, as in the sumlist
function shown above. They also allow a program to compute a result,
and return with the result a context for interpreting the result.
For example, a function could be declared of type:

eigenValues: (R: Ring, Matrix R) ->
(E: AlgebraicExtension R, Vector E)

A function satisfying the above declaration could be defined to create
a new arithmetic domain in which the eigenvalues of a matrix may be
defined, and a vector of eigenvalues could then be created in that do-
main. Both the new domain and the vector of eigenvalues could then be
returned by the function. Operations for manipulating the eigenvalues
can then be retrieved from E to operate on values from the vector.
A complete example of a dependent type constructing function has been
seen already in Section 2.4. There the MiniList function takes a param-
eter S: OutputType and returns result of type MiniListType S.
An example manipulating dependent mapping values is given in Sec-
tion 21.9. An example treating dependent type-value pairs as objects is
given in Section 21.10.
With types as values in Aldor, dependent types allow the specification
of relationships among types, which can be an extremely powerful pro-
gramming tool.

7.4. Dependent types · 79

Mutually
dependent types

Values may have mutually dependent types. For example, the type con-
structing functions defined by the language include:

->: (Tuple Type, Tuple Type) -> Type
Tuple: Type -> Type

As another example, functions may be declared with mutually dependent
arguments:

Ladder: (D: with {f: % -> E}, E: with {g: % -> D}) -> Type

Note that these mutual dependencies are in the type dimension; this
type of dependency is analogous to the more usual dependency between
expressions in the value dimension:

RecA == Record(head: A, tail: Union(nil: Pointer, b: RecB));
RecB == Record(head: B, tail: Union(nil: Pointer, a: RecA));

7.5
Subtypes

Type declarations in Aldor associate properties with constants and vari-
ables. These declared names may then be used in expressions and the
rules for well-formed expressions determine the properties associated
with the built-up expressions.
The most important property of an expression is how to interpret the
data representing the value of the expression. Every value in Aldor is a
member of a unique domain which determines the interpretation of its
data.
Sometimes it is necessary to associate additional properties with values,
and to provide rules to manipulate the values on the basis of the proper-
ties they satisfy. Subtypes provide the mechanism for manipulating the
additional properties associated with values.
A subtype is a type whose members lie in a particular domain and satisfy
a particular property. The domain to which the members belong is the
base domain of the subtype. The vocabulary of properties differs from
one base domain to another.
A value in Aldor may be a member of any number of subtypes. By
definition, the base domain for each of these subtypes is the same as the
unique domain of the value.
We use Subtype(D) to denote the set of all subtypes on the base domain
D. Suppose T1 and T2 are two subtypes from Subtype(D). If all the
values belonging to T1 also belong to T2, then we say T1 is a subtype of
T2 and write T1 v T2. We also say that T2 is a supertype of T1 and write
T2 w T1. For any particular base domain D, the collection of subtypes
Subtype(D) forms a lattice under the relation v. The empty subtype is

80 · Types

the bottom element and the subtype consisting of all elements of D is the
top element. The subtypes based on one domain can have no relationship
with subtypes based on another domain.
Not all domains support a vocabulary of properties. For this first ver-
sion of the language, only the domain of all domains and the domain of
all maps provide properties which lead to non-trivial subtype lattices.
It would be a compatible extension to the language to allow arbitrary
Boolean-valued functions to be used as properties for subtyping pur-
poses.
The following rules define the relation v:

Categories: For any category-valued expression C, let Ex(C) denote
the set of exported symbols which must be provided by any domain
D ∈ C. Then

C1 v C2 ⇐⇒ Ex(C1) ⊇ Ex(C2)

As a corollary of the above definition:

D ∈ C1 ∧ C1 v C2 ⇒ D ∈ C2

Inheritance for domains from categories is analogous to class mem-
bership and inheritance between categories is analogous to class
containment.
Note that Aldor is constructed so that a domain is only a member
of a named category if it explicitly inherits from the category — not
if it merely exports the same collection of (explicit) declarations1.
For named categories C1 and C2, it is only the case that C1 v C2
if C1 inherits from C2, either directly or indirectly.

Mapping types: The subtyping rule for mapping types is derived from
the fact that a function which maps S1 → T1 can be used in any
context which provides a value of type S1 as an argument, or a
value of type S2 where S2 v S1:

S1 → T1 v S2 → T2 ⇐⇒ S2 v S1 ∧ T1 v T2

Additionally, in determining the relation of mapping types, an ar-
gument or return with a keyword is a subtype of one without:

(A1, ..., ai : Ai, ..., An) v (A1, ..., Ai, ..., An)

If T1 v T2 then any value of type T1 can be used in any context which
requires a value of type T2.

1In the current implementation, each named category C implicitly exports a symbol
named “%%” with type C (see Section 8.12), whose presence is tested for in checking
category membership.

7.5. Subtypes · 81

7.6
Type
conversion

A type conversion is an operation which changes a value from one type to
a value of another type to which the original value would not otherwise
belong. As a general rule, Aldor does not automatically convert a value
from one type to another. For example, an integer is not automatically
converted into a floating-point number. Such conversions must be made
explicitly in the text of a program.
As discussed in Section 7.5, a value in Aldor may be viewed as a member
of more than one type by virtue of the subtype relation on types. In this
case no conversion is necessary.

Primitive
conversions

The language provides one primitive type conversion operation: pretend.
A “pretend” expression is used to lie about the type of a value.

Expr pretend Type
causes the value computed by Expr to be treated as though it were of
type Type. pretend is the only operator in Aldor which is not type-safe:
using pretend can lead to unchecked type errors which only reveal them-
selves when a program is executed. For this reason pretend should be
used with caution. For example, one could use “pretend” to examine the
bit-level representation of data when a type does not provide operations
to do so.
Two additional type-safe operations are defined in Aldor using pretend:
rep and per. These operators convert between the public and private
views of a type, and are discussed in Section 7.8.

Conversion
functions

Most type conversions are performed by functions. By convention, type
conversion is most often performed by a “coerce” function, exported
either by the source type or the destination type. Each library of Al-
dor programs may establish its own set of conventions regarding how
conversion functions are named, and where they are implemented.
Examples of conversion functions could include:

• coerce: MachineInteger -> % from DoubleFloat
• coerce: MachineInteger -> % from Integer

• coerce: SInt$Machine -> % from MachineInteger
• coerce: % -> SInt$Machine from MachineInteger

Such functions are so common that a special syntax is defined to allow
coerce functions to be called conveniently. The syntax

Expr :: Type
is a shorthand for the application

coerce(Expr) @ Type
(see Section 8.3).

82 · Types

Courtesy
conversions

While most type conversions must be made explicitly, a very conser-
vative set of courtesy conversions are performed as needed. Courtesy
conversions change between items represented as
• multiple values,
• a single Cross product value (see Section 14.4) and
• a single Tuple value (see Section 14.3).

Certain Aldor programs would be extremely pedantic if courtesy conver-
sions were not applied.
The following courtesy conversions are applied automatically as required:

• Cross(T, ..., T) -> Tuple T
• Cross(T1, ..., TN) -> (T1, ..., TN)
• Cross(T) -> T

• (T, ..., T) -> Tuple T
• (T1, ..., TN) -> Cross(T1, ..., TN)

• T -> Tuple T
• T -> Cross T

These conversions allow functions which take or return multiple values
to be used to pass arguments to other functions which can accept them,
without requiring notation for an explicit conversion.
These conversions are applied only when the type of an expression ex-
actly matches one of the conversions. For example, a value of type
List Cross(T, T, T) would not automatically be converted to a value
of type List Tuple T. Such a conversion could incur a significant hidden
cost, even in more ordinary circumstances.
There is not at present any mechanism for a program to specify additional
courtesy conversions.

7.7
Type
satisfaction

We say that a type S satisfies the type T if any value of type S can be
used in any context which requires a value of type T .
The following rules define the satisfaction relation among types in Aldor:

Exit: For any type T , the language-defined type Exit satisfies T . This
rule allows an expression of type Exit to be used wherever any
type is expected.

Category: A type S satisfies the language-defined type Category if S
is the type of a category.

Type: A type S satisfies the language-defined type Type if S is the type
of a domain or category. In other words, all domains and categories
are types.

7.7. Type satisfaction · 83

No value: For any type S, the type S satisfies the type (). In other
words, any value can be used in a context where no value is ex-
pected. The values are simply thrown away, and the expression is
treated as having returned no value.

Subtypes: If S is a subtype of T , then S satisfies T . See Section 7.5.
Courtesy conversions: A type S satisfies a type T if a courtesy con-

version exists which converts S to T . The courtesy conversion rules
are described in Section 7.6.

7.8
Domains

A domain is an environment providing a collection of exported constants.
These may include exported types, functions or values of other sorts.
It is useful to think of domains as being of two kinds: abstract datatypes
and packages. An abstract datatype is a domain which defines a distin-
guished type and a collection of related exports. A package is a domain
which does not define a distinguished type but does provide a collection
of related exports. That is, a package is a domain which is not an ab-
stract data type. This distinction is merely a convenience, though, as
one is merely a special case of the other, as will be seen below.

Creating domains
with “add”

The primitive for forming domains is the add expression. The syntax for
an add expression is

[Expr] add AddBody

The left-hand side Expr is an optional domain-valued expression, which
specifies a domain from which any or all of the exports of the add can
be inherited. Expr is called the parent (or parent domain) of the add.
The expression AddBody is typically a sequence of definitions which im-
plement the exports of the domain.
Examples of the different kinds of domains, all of which can be created
by add expressions, are to be found throughout the remainder of this
section.
The value of the expression A add B is a domain which exports those
symbols exported by A and those exports defined in B. The type of the
expression A add B is

C with { x1: T1; ...; xn: Tn }

where C is the type of A, and x1,...,xn are the symbols defined (using
==) in B, whose types are T1,...,Tn, respectively. Note that the types
T1,...,Tn are allowed to contain references to the values x1,...,xn.

Packages Packages are the simplest form of domains: they group a number of
values together in an unordered collection that can be imported as a
unit. A package formed with a single “add” expression can be used to

84 · Types

provide functions operating in a common environment, and packages may
be combined using binary “add” operations.
The following simple package provides functions for keeping score at a
baseball game:

add {
single(n: Integer): Integer == n;
double(n: Integer): Integer == n + n;
triple(n: Integer): Integer == n + n + n;
homer (n: Integer): Integer == n + n + n + n;

}

The exports from a package may include values belonging to different
types, including various functions among different types. Conditional
exports (see below) can also appear in packages.

Units conversion
example

Here is an example of a package which exports both types and functions:

#include "aldor"
#include "aldorio"

Lengths == add {
Centimetres == MachineInteger;
Inches == MachineInteger;

import from DoubleFloat;

local round(f: DoubleFloat): MachineInteger == {
import from Integer; -- for ’machine’
tmp: MachineInteger := machine truncate f;
if ((f - tmp::DoubleFloat) > 0.5) then tmp := tmp + 1;
tmp

}

inches(c:Centimetres):Inches == round(c::DoubleFloat/2.54);
centimetres(i:Inches):Centimetres == round(i::DoubleFloat*2.54);

}

import from Lengths;

i : Inches == 1 + 1 + 1;

stdout << i << newline;

c : Centimetres == centimetres i;

stdout << c << newline;

This package exports two types Inches and Centimetres, with opera-
tions for converting between them.

Abstract
datatypes

Often, a domain exports a distinguished type and a collection of opera-
tions on that type — in general, enough operations to make the type a
sufficiently interesting object. This situation is so overwhelmingly com-
mon that additional features in the language are used to support it.

7.8. Domains · 85

An abstract datatype is a domain which defines a distinguished type and
a collection of constants and functions related to the type.
The definition of an abstract datatype includes a specification of the
representation of values belonging to the type and the implementation
of operations which manipulate those values.
Inside an add expression which denotes an abstract datatype, the domain
value created by the expression is used as the unique type exported by
the expression. Within the add expression, this domain is denoted by
the identifier “%”.
We will often use the term “domain” when speaking of a particular ab-
stract datatype, if the meaning is clear from the context. In abstract
datatype terminology, a package may be described as a degenerate ab-
stract datatype which does not provide any exports on its type. Such a
structure is sometimes called an empty carrier.
The following example illustrates a simple abstract datatype:

add {
I ==> Integer;
import from I;

0 : % == 0@I pretend %;
1 : % == 1@I pretend %;

(x: %) = (y: %) : Boolean == x@% pretend I = y@% pretend I;

~ (x: %) : % == if x = 1 then 0 else 1;
(x: %) \/ (y: %) : % == if x = 1 \/ y = 1 then 1 else 0;
(x: %) /\ (y: %) : % == if x = 1 /\ y = 1 then 1 else 0;

}

This domain expression includes constant definitions for identifiers “0”
and “1” which belong to the domain and a few useful function definitions.
Since % denotes a domain, it can be used in type context just like any
other type. In particular, operations defined in an add expression can be
disambiguated by using a package call of the form “x$%”, which denotes
a value named x defined in the add expression. Furthermore, inside B in
a domain definition of the form:

D : C == A add B

(described below, under “Visibility of inherited operations”) the type
expression D is treated as equivalent to the type expression %, since the
domain D is defined as the value of the add expression, which is denoted
by % inside B. The fact that % and D are equivalent is not visible outside
the add. The equivalence is a property of the definition. The scope of %
is bound by the add.
Outside the add expression, the type expression D has no relationship to
any instances of % which may be visible.

86 · Types

Representation The representation type of the elements of a domain is the domain which
describes how data values belonging to the domain are encoded as se-
quences of bits.
Inside an add expression which denotes an abstract datatype, the con-
stant “Rep” is used to refer to the representation type of the elements of
a domain. Since Rep is a domain, it can be used in type context just like
any other type.
% and Rep denote two different types in Aldor. While a value of type %
belongs to the public view of the domain, a value of type Rep belongs
to the private view of the domain. For example, suppose that the rep-
resentation type for a polynomial domain is a list domain. We would
then say that a polynomial value is represented by a list: a list is not a
polynomial, nor is a polynomial a list.
The operations “rep” and “per” provide a type-safe mechanism for con-
verting data values between the public and private views of domain el-
ements: rep converts a value of type % to the representation type Rep;
per converts a value of type Rep to the public type %.

rep x ==> x @ % pretend Rep;
per r ==> r @ Rep pretend %;

An easy way to remember which conversion operation to use is to re-
member the assertions rep(x)@Rep and per(r)@%: the result from rep
has type Rep and the result from per has type % (percent).
To illustrate the use of Rep in a domain definition, consider the following
version of the simple add expression given above:

add {
Rep == Integer;
import from Rep;

0 : % == per 0;
1 : % == per 1;

(x: %) = (y: %) : Boolean == rep x = rep y;

~ (x: %) : % == if x = 1 then 0 else 1;
(x: %) \/ (y: %) : % == if x = 1 \/ y = 1 then 1 else 0;
(x: %) /\ (y: %) : % == if x = 1 /\ y = 1 then 1 else 0;

}

The representation type is defined as Integer, from which the domain
imports the operations it needs to use. The constants 0 and 1 are defined
by viewing corresponding values from the representation as values of
the domain itself. Similarly, the equality operation is defined using the
equality operation from the representation.
Separating a domain and its representation provides a clear line of de-
marcation between the public and private views of domain values. In

7.8. Domains · 87

this way, Aldor is an example of an abstract datatype language: the rep-
resentation of a domain provides the private view of its elements which
is used to define functions which operate on values from the domain. In
public, values from the domain are viewed as belonging to the domain
itself.
The operations provided by a domain can be arranged so that client pro-
grams which use a domain need not depend on the representation of the
domain. When the representation of a domain is localised to the domain
definition in this way, the representation is said to be encapsulated by
the domain definition.
The representation of a domain is typically a more primitive domain
which is chosen to achieve a certain level of efficiency in the operations
provided by the domain. At the lowest representational level lie the
built-in machine types provided by the Aldor base library, described in
Section 14.16 and in Section 15.1.
Each of the machine types is a domain whose representation depends on
the architecture of the machine being used. While the actual representa-
tions of machine-level values are not specified by the language, typically
most or all of them will have efficient runtime implementations. The
availability of these built-in types provides a great degree of flexibility in
designing efficient representations for Aldor domains.

Domain
inheritance

A domain may inherit the implementation of many of its operations from
another domain, called its parent , by placing the parent domain on the
left-hand side of an add expression.
For example, when the add expression:

Integer add {
Rep == Integer;
import from Rep;

0 : % == per 0; -- This definition is redundant.
1 : % == per 1; -- This definition is redundant.

-- This definition is redundant.
(x: %) = (y: %) : Boolean == rep x = rep y;

~ (x: %) : % == if x = 1 then 0 else 1;
(x: %) \/ (y: %) : % == if x = 1 \/ y = 1 then 1 else 0;
(x: %) /\ (y: %) : % == if x = 1 /\ y = 1 then 1 else 0;

}

is used to define a domain which exports the operations 0, 1, and =,
these operations can be inherited from Integer, and so need not be
implemented explicitly in the add expression.
A domain may inherit operations from another domain only if the repre-
sentation type of the parent domain is compatible with the representation
type of the domain. In many cases the representation type of the domain
will be taken to be the parent domain itself. Packages and abstract data

88 · Types

types may inherit from packages without reservation since there is no
possibility of representation mismatch in this case.

Visibility of
inherited
operations

Operations provided by a domain are often defined using other operations
provided by the domain. When some operations are inherited from a
parent domain, it is important that these operations be visible in the
add expression. In the domain definition2

MyBit : BooleanArithmeticType with {
0 : %;
1 : %;

}
== Integer add {

~ (x: %) : % == if x = 1 then 0 else 1;
(x: %) \/ (y: %) : % == if x = 1 \/ y = 1 then 1 else 0;
(x: %) /\ (y: %) : % == if x = 1 /\ y = 1 then 1 else 0;

}

the definitions for ~, \/, and /\ each use the operations 0, 1, and = from
MyBit, which are inherited from Integer. These inherited operations
are made visible in the add expression by the following rule: whenever
an expression A add B appears in a context requiring a domain whose
type is the category C, then any operations required by C which are not
defined in B are taken from the domain A.
So in the above example, the add expression used to define MyBit appears
in a context which requires a domain which satisfies BooleanArithmeticType
and provides the exports 0 and 1. BooleanArithmeticType is a cate-
gory provided by the standard Aldor library, which includes, among other
things, a declaration for “=”:

= : (%, %) -> Boolean;

Since the domain Integer (from the base Aldor library) also implements
an operation = with the same signature, this operation is made visible
on the right-hand side of the add.
Note that the statement import from Integer would also make the =
operation from Integer visible, but its signature would instead be:

= : (Integer, Integer) -> Boolean;

and so it could only be used to compare Integers, not MyBits.
Conditional
definitions

A conditional definition is a definition which is only provided by a domain
under certain assumptions. For example:

2This example uses a with to declare the type of the domain, which will be ex-
plained in section 7.9.

7.8. Domains · 89

Zmod (n: Integer) : ArithmeticType with {
if prime? n then inv : % -> %;

}
== Integer add {

if prime? n then {
inv (x: %) : % == ...

}
}

Zn, the domain of integers modulo n, is always a Ring. However, if
n is prime, then Zn is also a Field, meaning that it should provide a
multiplicative inverse for nonzero values. In an add expression, a defini-
tion which appears in the consequence of an if expression is said to be
a conditional definition: the domain only provides the operation if the
condition in the if expression evaluates as true.

7.9
Categories

In Aldor a category is used to specify information about domains. Cate-
gories allow domain-manipulating programs to place restrictions on the
sort of domains they are prepared to handle and to make promises about
the domains which they may return. The restrictions and promises are
expressed in terms of collections of exports which the domains in question
will be required to provide.
All type values have “Type” as their unique base type. As with all other
values, it is the unique base type which determines how values are to be
represented.
On the other hand, a domain may belong to any number of categories
so long as it has the necessary exports. That is, the world of categories
provides a sub-typing structure on Type.
This section describes how to create and use categories.

Creating
categories with
“with”

The primitive for forming categories is the with expression. The syntax
for a with expression is

[Expr] with WithBody

The left-hand side is an optional Category-valued expression. Allowing
a nonempty expression on the left-hand side is merely a syntactic con-
venience, and is equivalent to placing the expression as a part of the
right-hand side:

L with { R }
is equivalent to

with { L ; R }
The right-hand side of a with expression contains a specification of the
set of exports which must be provided for a domain to belong to this
category. The specification is typically a sequence containing any of the
following types of expression:

90 · Types

• declarations
• category-valued expressions
• conditional expressions
• default definitions

The following is an example of a simple category:

with {
scale: (Integer, Integer) -> Integer;
n: Integer;

}

For a domain to satisfy this category, it must provide at least two exports:
“scale”, a function of the given type, and “n”, an Integer. For example,
the domain “D” as defined in the following program satisfies this category:

D == add { import from Integer; n == 3; scale == *; extra == 0 }

Here, the type of D is inferred to be

with{n: Integer; scale: (Integer, Integer) -> Integer; extra: Integer}

It is quite usual to see with expressions as the declared types in defini-
tions. The definition of D could just as well have been written as

D: with {
n: Integer;
scale: (Integer, Integer) -> Integer;
extra: Integer

}
== add {

import from Integer;
n == 3;
scale == *;
extra == 0;

}

This form has the advantage that the interface to the domain is explicitly
shown.
The exports specified by a with expression may have mutually dependent
types. That is, it is possible to export types and operations on them.
For example:

with {
DecomposedMatrix: Type;

decompose: Matrix R -> DecomposedMatrix;

solve: (DecomposedMatrix, Vector R) -> Vector R
}

7.9. Categories · 91

(where R is a parameter).
In general, any number of related types and operations may be given:

#include "aldor"

with {
T: Type;
L: ListType T;

x: T
lx: L;

}

Typically, a domain will export a type and enough operations on that
type to make it a sufficiently interesting object. It therefore makes sense
to equate the exporting domain and the type for which the exports are
being defined. The name used for this unified domain is “%”, and is
implicitly exported by all types formed using “with” and “add”.
Thus, the “DecomposedMatrix” example above may be rewritten by re-
placing DecomposedMatrix with %:

with {
decompose: Matrix R -> %;
solve: (%, Vector R) -> Vector R

}

A domain satisfying this type would have the following form:

DecomposedMatrix: with {
decompose: Matrix R -> %;
solve: (%, Vector R) -> Vector R

} == add {
Rep == ...

decompose(m: Matrix R): % == ...
solve(dm: %, v: Vector R): Vector R == ...

}

Export from In addition to the exports specified in the declarations of a with expres-
sion, a category may also cascade exports from other domains. That is,
when a domain satisfying some category is imported, operations from
other domains may be implicitly imported. The export from form is
used to specify the additional domains to be imported.
For example,

with {
decompose(m: Matrix R): % == ...
solve(dm: %, v: Vector R): Vector R == ...

export from Matrix R;
}

92 · Types

When a domain satisfying this category is imported, Matrix R will also
be imported. As with the import from statement (see Section 8.4), it is
possible to restrict the imports which are cascaded:

export {+: (%, %) -> %} from Matrix R;

This form will import only the “+” operation from Matrix R.
The cascaded exports of a category do not affect type satisfaction ques-
tions in any way.

Defaults It is a common situation that, if we are given a category satisfying a
number of operations, new operations can be defined on domains in that
category, which only use the information supplied in the category. For
example, a datatype with an equality operation may be declared as:

with {
=: (%, %) -> Boolean; ++ equality

}

A domain which satisfies this category is free to decide its own imple-
mentation of equality. As it stands, this is fine but we may want further
operations on the datatype, such as a not-equals operation, ~=.

with {
=: (%, %) -> Boolean; ++ equality
~=: (%, %) -> Boolean; ++ inequality

}

This would imply that in order to satisfy this type a domain needs to
export the two operations above. However, it seems a waste not to use
the fact that inequality may be implemented in terms of equality in
order to save every domain satisfying this category having to define both
operations. This is achieved through default implementations (default
constant bindings).

with {
=: (%, %) -> Boolean; ++ equality
~=: (%, %) -> Boolean; ++ inequality
default {

(a: %) ~= (b: %): Boolean == not (a = b);
}

}

The default implementation will call the “=” operation from the domain,
then return the complement.
A (rather trivial) domain satisfying this category is:

7.9. Categories · 93

Dom: with {
=: (%, %) -> Boolean; ++ equality
~=: (%, %) -> Boolean; ++ inequality
default {

(a: %) ~= (b: %): Boolean == not (a = b);
}

} == add {
(a: %) = (b: %): Boolean == true;

}

This domain suffers from the deficiency that it is impossible to create
new elements (due to the definition of equality), but importing from it
will add the constants “=” and “~=” to the current scope.
A domain is also free to implement operations which have default im-
plementations. In this case, the domain over-rides the operations in the
default and importing the domain will activate the operations in the
domain.
In a default definition, the uses of other exports from the type are ob-
tained by looking up the operations in “%”. This will first yield values
from definitions in the domain or more closely applicable default bodies.
Thus, default implementations provide a mechanism for late-binding of
names to values.

Defining
category-valued
constants

It is inconvenient to have to repeat category expressions in a program.
The language allows categories to be treated as normal values and allows
names to refer to categories. A category (by definition) is a value of the
Aldor built-in type Category.
To decide whether a particular domain satisfies a category, it is necessary
to know that category’s value. For this reason, it is most useful to use the
“define” keyword in giving categories and category-returning functions
their values. This makes the value as well as the type publicly visible.
For example,

define Finite: Category == PrimitiveType with {
#: Integer;

++ Number of values in the type.
...

}

defines a category, Finite, which exports a constant called “#”, plus
some other things. The following definition makes use of the Finite
category:

NotALot: Finite == add {
#: Integer == 0;
...

}

which creates a new domain “NotALot” for which the # constant has
value 0. The remainder of the definition is elided here.

94 · Types

The new domain can then be used:

import from NotALot;
stdout << #$NotALot << newline;

The above program will print 0.
The new domain can also be used in contexts requiring something that
satisfies Finite:

-- define a function giving the size of a domain
sizeof(FiniteDom: Finite): Integer == #$FiniteDom;
-- call it
sizeof(NotALot) --- ’0’

A category can be used inside a “with” body. Including a category
places all the declarations of that category into the new category. This
mechanism allows categories to inherit from one another.
Thus, we can define a new category, “FiniteGroup” as:

define FiniteGroup: Category == with {
Finite;
1: %; ++ Identity for multiplication.
*: (%, %) -> %; ++ Multiplication.
inv: % -> %; ++ Inverses.

}

In order to satisfy this category, a domain must implement at least all the
non-defaulted declarations from Finite, as well as the three explicitly
mentioned by FiniteGroup.
A “with” expression is a valid right hand side of a category definition.
This allows the creation of parameterised categories. For example, the
decomposed matrix category example above could be written as:

define DecomposedMatrixCategory(R: ArithmeticType): Category == with {
decompose: Matrix R -> %;
solve: (%, Vector R) -> Vector R

}

A domain which satisfies this category may be defined as follows:

DecomposedRationalMatrix: DecomposedMatrixCategory(Integer) ==
add {

Rep == ...

decompose(m: Matrix Integer): % == ...
solve(dm: %, v: Vector Integer): Vector Integer == ...

}

A domain producing map can also satisfy this category. For example:

7.9. Categories · 95

Decomposed(R: ArithmeticType): DecomposedMatrixCategory(R) ==
add {

Rep == ...

decompose(m: Matrix R): % == ...
solve(dm: %, v: Vector R): Vector R == ...

}

Join The “Join” function takes as argument a tuple of categories and creates
a new category which has the union of all their exports. Any conditions
on declarations are ored together.
For example,

Join(OutputType, PrimitiveType);

produces the category:

with { OutputType; PrimitiveType }

which includes all the exports from both OutputType and PrimitiveType.
Has expressions A “has” expression has the following form:

dom has cat

where dom is a domain-valued expression, and cat is a category-valued
expression. A “has” expression may be used in any part of a program,
but is most often used to conditionalise domains and categories. The
result of the expression is a Boolean value which will be true if dom can
be shown to satisfy the category, and false otherwise.
Some examples:

Integer has ArithmeticType -- true
Integer has FloatType -- false
Integer has with { +: % -> % } -- true
Integer has with { +: Integer -> Integer } -- true

Integer has OrderedArithmeticType with { factorial: % -> % } -- true
Integer has OrderedArithmeticType with { bozo: % -> % } -- false

List Integer has ListType Integer -- true
List Integer has ListType DoubleFloat -- false

The evaluation of this expression is made at run-time, so one may con-
ditionalise code on the parameters to a function:

move(V: Vehicle): () == {
if V has PlaneType then

takeOff V;
else if V has BoatType then

sailAway V;
else

roll V;

}

96 · Types

This function will call “takeOff”, “sailAway” or “roll”, depending on
the type-valued parameter V.

move(MountainBike) --- calls roll
move(Concorde) --- calls takeOff
move(Yacht) --- calls sailAway

Conditional
expressions

Frequently, a domain will satisfy additional categories if particular con-
ditions on parameters, or on the domain itself, are met. This information
may be incorporated into a category expression as a conditional state-
ment. A conditional statement has the same form as an if statement,
except that if the body contains declarations and definitions, they are
associated with the condition for the purposes of type satisfaction.
For example,

with {
BoundedFiniteLinearStructureType S;
if (T has TotallyOrderedType) then {

TotallyOrderedType
sort!: % -> %

}
}

is a category which is satisfied by any list type which exports an ordering
on itself whenever its elements do. Provided that

S == Integer;

the following domain would satisfy this condition:

List Integer add {
Rep == List Integer;

local tails(l: %): Generator % == generate {
while l repeat { tmpl := rest l; yield l; l := tmpl; }

}

(l1: %) < (l2: %): Boolean == {
local x, y: %;
for free x in tails l1

for free y in tails l2 repeat {
x.first > y.first => return false;
x.first < y.first => return true;

}
if not empty? x then false;

}
sort(l: %): % == {

...
}

}

Here, the condition is satisfied because S is Integer, a member of the
category TotallyOrderedType, and the appropriate operations are de-
fined by the add body.
Conditional statements are most often used in parameterised categories:

7.9. Categories · 97

define ListCat(T: Type): Category == with {
if T has PrimitiveType then PrimitiveType;
BoundedFiniteLinearStructureType T;
...

}

Evaluation rules The bodies of “default” statements inside with and add expressions
may include side-effecting statements. These will be evaluated in order to
make the constants inside the body well defined, but the language makes
no guarantees on when (or indeed, if) these side-effecting statements will
be evaluated for a given category or domain.
The bodies of with and add expressions are evaluated in such a way that
they will be evaluated after the expressions they depend on. If mutually
recursive type-forming expressions are found within the body of either
with or add expressions, the expressions are computed as a fixed point,
rather than evaluated in strict sequence. This fixed point computation
uses a technique from functional programming to create self-referential
data structures.

98 · Types

CHAPTER 8

Name spaces

For a computer, or a human being for that matter, to understand an
Aldor program it is necessary to establish the context which gives the
meanings of symbols. This is perhaps more important than in other
familiar programming environments, since Aldor has fewer built-in as-
sumptions. Much of what is built-in with other programming languages
is provided by libraries in Aldor. For example, Aldor libraries define the
types “String”, “Integer”, and “DoubleFloat” and their operations.
Typically, the interface to these libraries is through an include file which
imports the library so that it may be used in the current program.
This chapter describes how symbols in a program are associated with
particular meanings, and how a meaning is selected when several are
applicable.

8.1
Scopes

A symbol’s meaning is given by the context in which it appears. A partic-
ular meaning (for example: “n is the second parameter in the definition
of the ‘+’ function in the domain Integer”) has a visibility, or scope,
governed by the constructs in which it is introduced. In common with
most programming languages, Aldor mainly uses lexical scoping.
New scopes in Aldor are introduced by the following expressions:
• E where Definitions
• +->
• with
• add
• for i in ...
• Applications, e.g. Record(i: Integer == 12)

These forms may be nested to any depth. Note that the last two bind

99

names in particular positions in the expression, and do not form general
scope levels.
Lexical scoping implies that the only variables visible at a given point
in a program are those that have been created locally or imported into
scopes surrounding the current point.
In Aldor, there are two types of meaning for a given symbol — it must
either be a constant or a variable. Constants are created in the following
ways
• “==” statements.
• The bound symbols in a “for” iterator
• implicitly via an “import” statement
• implicitly via a declaration

A constant may not be assigned to, and therefore holds the same value
throughout its lifetime. If two constants have identical names in the
same scope (the name is overloaded), then an assigned variable’s type or
a qualification (using $) is used to disambiguate the uses of the constants.
A variable may be created explicitly, by a declaration, or implicitly, when
it appears on the left of the assignment operator, “:=”. Variables may
be re-assigned; they may not be used in type-forming expressions.
When a scope forming expression is used in Aldor, all definitions and dec-
larations directly within that scope are visible throughout the scope —
sequences have no effect on what names are in scope. In the example

...
{

x: Integer := 4;
y: Integer := 3;

}
adds(a: Integer): Integer == x + a + z;
z: Integer := 3 + y
...

the current scope is extended with the variables x, y and z along with
the constant adds. Note that adds uses z before it is defined in the
outer sequence, and that x and y are defined in a subsequence, but the
definitions are at the same scoping level as the others in the example.
A type may be viewed as an environment, mapping constant names and
types into value bindings from a particular type. In Aldor, object files
and libraries are values which map names and types into the values de-
fined inside the file or library. This idea allows types, object files and
libraries to be treated uniformly.

100 · Name spaces

8.2
Constants

A constant definition may appear at almost any point in a program. If
its outer defining scope is a with or add then it will be treated as an
export of that type. If the type is used in a context not requiring the
export, then the export will not be visible when the type is imported. A
definition returns the type of the new variable.
A particular name in a scope may be overloaded with several constant
values, either defined in the local scope or imported into it.

#include "aldor"
#include "aldorio"

x: Integer == 3;
x: String == "hello";
stdout << (x*x) << newline; -- uses x: Integer
stdout << concat(x,x) << newline; -- uses x: String

Here the name “x” refers to both a constant of type String and a con-
stant of type Integer. In the two print statements, the constant to be
used is selected according to context, in this case according to the avail-
able signatures for + and concat. In the first case there is no signature
for + which takes a string as an argument, but there is one which takes
two integers and returns an integer. In the second case there is no concat
which takes an integer as an argument, but there is one which takes two
strings and returns a string.

8.3
Disambiguators

Occasionally, it is not possible to tell which constant to use given a
particular name. For example

x: Array Integer == [3,2,1];
x: List String == ["Hello","my","friend"];
a: MachineInteger := 2;

stdout << x.a << newline;

In this case, “x.a” is ambiguous, as it may refer to either the apply
operation from List String or the apply from Array Integer. In this
case, we can specify which is required by restricting theresult to be of
an appropriate type. If the second String of the list (note that Lists
indexing starts at 1 while Arrays start at 0) is wanted then the print line
should read

stdout << (x.a)@String << newline;

Sometimes a constant with the same name and type may be imported
from different domains. In this case the package call operator, $, can

8.2. Constants · 101

be used to disambiguate the constants. For example, both SingleFloat
and DoubleFloat export a constant “max”. Thus

stdout << max$SingleFloat << newline;
stdout << max$DoubleFloat << newline;

might print 3.40282320e+38 and then 1.79769313486231467e+308 on a
particular machine.

8.4
Import
from

The “import” statement brings constants which are exported from types
into scope1. The simplest form of an import statement is

import from D1, . . . , Dn;

with n ≥ 1. This form imports all of the exported constants from the
given domains (these are treated as type-forming expressions, see chap-
ter 14). The importations are made in sequence, so that later domains
can depend on exports from earlier ones. The precise exports of types
are given by the category of the type, as described on page 92.
The complete form of the import statement is:

import restrictions from D1, . . . , Dn;

This form is used less often than the previous one, typically when a small
number of operations are required from a group of types. Importing the
“<<” operations from a type is a common example.
This form introduces the exported constants from D1, . . . , Dn into the
current scope. In this case, the restrictions are either a category expres-
sion or a sequence of declarations.

import { +: (%, %) -> %; -: % -> % }
from Integer, String, Float;

import ArithmeticType from DoubleFloat, Integer;

The first statement will import the constants for addition and negation
from Integer and Float into the current scope. Nothing will be im-
ported from String as this type does not export either operation.
The second will import the operations necessary to satisfy ArithmeticType
from the given domains.
Values created by programs written in other languages can be made
visible using an import from a “Foreign” type. This is described in
Section 14.15.

1Libraries in Aldor are simply types which export their contents.

102 · Name spaces

8.5
Inline from

The “inline” keyword is similar to the “import” keyword, but instead of
importing names into a scope, it allows the result of compiling the current
scope to depend on the compiled values of the constants indicated. This
dependency information may then be used by the compiler to determine
if a particular function may be inlined (for optimisation) instead of called
in the normal way. Allowing this form of optimisation can give very high
quality code. The cost is that, if a file is recompiled, then every file
which contains an inline statement mentioning that file should also be
recompiled to ensure consistency, slowing down the development cycle.

#library AldorLib "aldor"

import from AldorLib;
import from Integer;
import from DoubleFloat;
import from TextWriter; -- For ‘stdout and ...
import from Character; -- for ‘newline’ and ‘<<’

-- (all normally imported
-- when ‘aldor’ included).

inline from Integer;

stdout << 3 + 2 << newline; -- 3 + 2 gets optimised.
stdout << 3.0 + 2.0 << newline; -- 3.0 + 2.0 doesn’t.

(See section Section 17.2 and section Section 17.3 for an explanation of
“#library”.) This code, when compiled with optimisation on, converts
the function calls from the Integer domain into machine-level opera-
tions, but leaves the other operations as ordinary function calls.
One consequence of granting permission to inline from a domain is that
permission is also granted to inline from all types exported by the do-
main. So using inline from AldorLib, for example, grants permission
to inline from all the domains in the above example (and the rest of the
Aldor library).
There are two other consequences of inlining: first of all it can increase
the size of the compiled code, and secondly it can make debugging harder.
For these reasons no inlining is done automatically, and there are a num-
ber of compiler flags which the user can use to either enable inlining of any
function, disable all inlining, or restrict the increase in code size by a par-
ticular amount (see the documentation for -Q inline, -Q inline-all
and -Q inline-limit in Section 23.8).
As in the import statement, there may also be restrictions on the par-
ticular constants allowed to be inlined.

8.6
Variables

New variables are created by declaration statements (described below),
or implicitly by the first assignment to a variable inside a scope. In the
implicit case, the variable is lexical and local to the scope.
It is an error to have two variables with the same name in the same
scope—thus

8.5. Inline from · 103

x: Integer := 3;
x: String := "hello";

will give a compile-time error “Variables cannot have different types in
the same scope”. In addition, it is an error to define a constant with
the same name as a variable within a scope. An assignment will create
a new variable hiding any names not explicitly imported. For example:

import from Integer;

-: Integer := 3;

defines a new variable of type Integer. The “-” function from the
domain Integer is hidden by this statement — it can still be accessed
by using the qualified name: -$Integer.
Aldor will generate a warning if an implicitly local variable in a new
scope shadows a similarly named variable in an outer scope.

8.7
Functions

A function introduces a new scope level which includes the parameters
to the function: As you might expect, parameters to the function are
visible inside the function. A function expression has the following form:

(s1: S1 == v1, ..., sn: Sn == vn) : (t1: T1, ..., tm: Tm) +-> E

where the expression E is treated as being in a new scope, with s1, . . . ,
sn being introduced into that scope. The value of such an expression is
a function which, when called with arguments ai, of appropriate types,
will return the result of evaluating E with the the actual argument values
ai substituted for the formal parameters si. See the rules described in
Section 6.5 for how this expression is evaluated.
The resulting function is sometimes known as a closure, as it closes over
(i.e. gathers up, and places somewhere safe) the lexical variables (not
the values of the variables) that it references.
For example,

...
import from List Integer;
n := 2;
m := 3;
if cond() then

f := (a: Integer): Integer +-> n+a;
else

f := (a: Integer): Integer +-> m*a + n;
m := 22;
return map f lst;

104 · Name spaces

When the function-valued variable f is passed into the function map, the
value of m used is 22 — not the value 3 which was in effect when f was
defined.

Parameters A function parameter may be assigned to, in the right hand side of a
“+->” expression, where it is an implicit local; the right hand side of the
“+->” expression is a fresh scope.
Parameters may be updated as variables. However, if they are not mod-
ified within the scope of the function, then they may be used in type-
forming expressions (e.g., expressions used in import statements).

8.8
Where

A “where” expression is of the form:
Expr where Defns

in which Defns is a sequence of declarations and definitions, used in the
evaluation of Expr. For example

x+y where { import from Integer; x := 2; y := 3}

evaluates to 5. This can be useful when an expression has many repeated
parts which can be factored out as a sequence of definitions. The names
introduced in the declarations are visible in the expression part and also
in the declarations (note that this expression does not import bindings
from Integer into the outer scope). However, names introduced in the
Expr are treated as if they are declared at the outer scope level, so

x: Integer == y where { import from Integer; y := 2}

adds a variable “x” to the outer scope, the definition of which references
“y” which will not be visible in the outer scope.

8.9
For
iterators

A “for” iterator introduces a new local name, unless that name is de-
clared free (see Section 5.14). The name is local to the “repeat” loop or
collect form, and is treated as a constant. That is, it may not be updated
within the body of the loop or collect expression.

8.10
Add

The “add” operator has the following syntax:
Add-domain add declarations

It combines a group of declarations with a (possibly omitted) domain, to
form a new type (see Section 7.8). Declarations on the right hand side
of the add are marked as being exports of the new type, provided that
they are not explicitly defined as local.

8.8. Where · 105

An add expression also introduces a binding for the constant %, which is
a reference to the domain formed by the add expression.

8.11
With

A “with” expression forms a new category, and has the following syntax:
L with R

This is equivalent to
with { L ; R }

where L evaluates to a category and R is a sequence of either declara-
tions or other category expressions. These form a new scope, which also
contains a binding for %, which refers to the domain over which the cat-
egory is built (that is, the domain under consideration in the category)
and whose type is the value of the with expression. (For more details on
categories, see Section 7.9.)
For example,

#include "aldor"

define BinaryAggregate: Category ==
Join(BoundedFiniteLinearStructureType(Boolean), BooleanArithmeticType) with {

default {
~(barr: %): % ==

[not bit for bit in barr];
(a: %) /\ (b: %): % ==

[b1 and b2 for b1 in a for b2 in b];
}

}

DumbBitArray: BinaryAggregate == Array Boolean add {
(\/)(x: %, y: %): % == ~((~(x) /\ ~(y)));

xor(x: %, y: %): % == (x /\ ~y) \/ (~x /\ y);

(=)(x: %, y: %): Boolean == {
for bitx in x for bity in y repeat

if bitx ~= bity then return false;
true;

}
}

Defines a new category (the define keyword is explained in Section 8.13)
called BinaryAggregate. The type DumbBitArray is a simple domain
satisfying BinaryAggregate.
The % in the body of the with statement refers to a domain of type
BinaryAggregate.
A with expression also defines a constant named “%%” for each category
from which the with expression inherits. The type of %% is the inher-
ited category, and the value is the domain viewed as a member of that

106 · Name spaces

category. In the example, %% bindings are in scope for the following cate-
gories: BinaryAggregate, BooleanArithmeticType, BoundedFiniteLinearStructureType
Boolean, BoundedFiniteDataStructureType Boolean, FiniteLinearStructureType
Boolean, PrimitiveType, and so on. The %% bindings are generally most
useful for checking conditions.

8.12
Application

Applications allow arguments which are declarations or definitions. The
identifiers which are declared or defined in arguments are then local to
the application form. For example, in
F(3.2, 5.8, tolerance == 0.02)
G(T: Type, List T),

the identifier tolerance is local to the application of F, and the identifier
T is local to the application of ”G”.
A comma expression may declare identifiers to be used in later elements.
In the expression (e1, . . . , en), if any ei is a declaration or definition,
then the name is visible in the expressions ej , i < j ≤ n. The declara-
tions place names in the current scope — the comma expression of itself
does not create a new scope. So, in the case where a comma expression
provides arguments to a function, declared identifiers are local to the
application.
This allows dependent function types to be created: the -> operator
is simply a function which is applied to two tuples of types. For the
expression (S1, . . . , Sn) -> (T1, . . . , Tm) any identifiers declared in Si are
visible in any of the Tj . In addition, both the left and right hand sides
are comma expressions, so the above rules apply.
The following is a possible example of the use of dependent types to form
a new function type:

f: (T: Type, t: T) -> (LT: ListType T, lt: LT)

Note that “T” is used on both sides of the arrow.
It is similarly possible to create dependent product types: the Cross
operator is a function which accepts some number of types as arguments
and produces the product type. The argument types may have declara-
tions which induce dependency. For instance:

Cross(T: Type, List T)

While the built-in functions “->” and “Cross” allow dependency induc-
ing declarations as their arguments, the language does not currently pro-
vide a mechanism for creating new functions which support this2. Thus,
although

2Making this the default for all functions would add a significant run-time cost to
almost all function applications in a program.

8.12. Application · 107

HashTable(n: Integer, IntegerMod n)

is a legal call, HashTable as a type defined in a library cannot support
this form of dependency, and an error may be signalled by the compiler
when this type is used.

8.13
Declarations

Declarations associate a type with a name. A declaration is of the form:
modifier idlist: Type.

The modifier is one of:
• default
• define
• local
• fluid
• free
• export

Either (but not both) of the modifier and the “: Type” may be omit-
ted. A declaration may appear in any context not requiring a value,
and remains in force throughout the enclosing scope. If the modifier is
omitted, the compiler assumes that local is meant and issues a warning
that default may be intended.
Some modifiers allow definitions or assignments in a declaration. In this
case, the type part is optional and the declaration has one of the forms

Modifier id [: Type] := E

Modifier id [: Type] == E

If the type information is omitted, then the type is inferred or taken
from default declarations. When the type information is present, say
declaring id: T, the declaration also imports type T into the current
scope. If this is not desired, then the declaration may use “:*” in place
of “:” to avoid the import.
Finally, it should be noted that it is also possible to give a sequence of
assignments or definitions in these statements. For example,

local {
a: Integer := 1;
b: Integer := 2;
c: Integer := 3

}

108 · Name spaces

Default The “default” modifier declares that any instances of the names speci-
fied will have the type indicated. This does not create any new bindings.

default n: Integer;
n := 23;
f(n): Integer == n + 1;
stdout << n^10 << newline where { local n := 2 };
stdout << n << newline;

This example creates 3 integer variables named “n”. The type of these
does not need to be specified as it is given in the default statement. This
example prints 1024, and then 23.
The “local” declaration in the “where” statement is included to avoid
a warning about the n in the outer scope.
A warning is given if a binding has a default type and there is a decla-
ration in scope with a second type.
A default statement around a definition or definition sequence inside a
“with” scope modifies the way that exports from the current domain
are interpreted. This allows generic methods to be defined which em-
ploy definitions found in inheriting types. This is further explained in
Section 7.9.

Define A “define” modifier allows the definition of a value to be visible as
well as its type. This is especially useful in category-forming definitions,
because without the define it is impossible to decide what signatures
are exported by the category.

define Monoid: Category == PrimitiveType with {
1: %; ++ Identity for multiplication.
*: (%, %) -> %; ++ Multiplication.

}

The above example defines the category Monoid. Without the “define”
keyword, uses of this definition would only have the type of the category
(Category in this case) available.

Local The “local” modifier declares that the given identifiers are local to the
current lexical scope. For example local x declares that the “x” will
be a local, and does not specify a type, so this will be deduced at the
first assignment to the variable. A local declaration may also include
an initial assignment or definition of the names it introduces.
Names which are assigned using “:=” and not otherwise declared are
treated as local.

Fluid The “fluid” declaration declares that the given identifiers should be
treated as having dynamic, as opposed to lexical scope. The declaration
is enforced within the lexical scope containing the declaration. Refer to
section Section 8.14 for more details.

8.13. Declarations · 109

Free A “free” declaration indicates to the compiler that the given name ref-
erences a variable in an outer scope, and that the initial assignment to
the variable should be interpreted as an assignment to the outer variable,
rather than an initialisation of a new variable.

callCount := 0;
f(n: Integer): () == {

free callCount;
callCount := callCount + 1;
n + 1;

...

The code above counts the number of times the function “f” is called.
Without the free declaration for callCount, callCount inside the func-
tion would refer to a new local variable shadowing the outer variable.
The free declaration may refer to either a parameter or a (possibly fluid)
variable.

Export An “export” modifier may be used to declare that certain names are to
be made visible outside the scope in which they are defined. This is the
effect when export is used at the top level of an “add”, “with” or file
scope. In other contexts, export has the same meaning as local.
An export declaration may be followed by an optional “to” part. This
is used to make Aldor values visible to programs written in other pro-
gramming languages. See Section 14.15 for details.
An export declaration occurring in a with-expression may be followed
by an optional “from” part. This indicates the source of the items to
be exported, in the same way the “from” part of an import or inline
statement indicates the source of the items to be imported or inlined.
This is described in Section 7.9.
Names which are defined using “==” and not otherwise declared are
treated as exports.

8.14
Fluid
variables

Fluid variables are not often needed but can be useful when a large
amount of dynamic state is needed, or a routine is parameterised by a
very large number of variables.
A fluid variable exists throughout the lifetime of a program, and its value
is always the most recent extant binding of the variable. The extant
bindings are the bindings of the variable inside fluid declarations from
scopes which have not yet been exited.
When a variable is declared fluid, all references to that name inside the
declaration’s scope are assumed to be fluid.

110 · Name spaces

An example might help:

#include "aldor"
#include "aldorio"

fluid n: Integer := 2;

f(): () == stdout << "The value of n is " << n << newline;
g(): () == { fluid n := 3; f() }

f();
g();

The fluid variable “n” is bound at the top-level and given the value 2.
This is the value printed by the top-level call to f. In the next call, the
function g re-binds n giving it the value 3. Then when f is called, it is
the new value, 3, that is printed. On exit from g, this binding of n is
removed and n assumes the value it had in the outer scope.
As usual, an inner declaration (e.g. local, export) may locally over-
ride an outer declaration (e.g. fluid). Note that without the “fluid”
declaration in g, the inner n would be treated as having an implicit
“local” declaration. This would then behave as in the example below.
The inner occurrence of n is a new local variable, unrelated to the outer
n, and the call to g results in 2 being printed.

#include "aldor"
#include "aldorio"

fluid n: Integer := 2;

f(): () == stdout << "The value of n is " << n << newline;
g(): () == { local n := 3; f() }

f();
g();

If no initialisation is given in the fluid declaration, then the variable
is taken to exist in an outer dynamic scope. In the example below, the
function “g” provides a binding for the variable “n”. Then, when the
function f is called from g, the uses of “n” in f refer to the binding in g.

#include "aldor"
#include "aldorio"

f(): () == {
fluid n: Integer;
stdout << "The value of n is " << n << newline;

}
g(): () == {

fluid n: Integer := 3;
f();

}

g()

8.14. Fluid variables · 111

If an assignment to an existing fluid variable occurs in a context other
than a fluid declaration, it will modify the current value of the variable,
rather than creating a new one:

#include "aldor"
#include "aldorio"

fluid n: Integer := 2;

f(): () == stdout << "The value of n is " << n << newline;

g(): () == {
fluid n: Integer;
n := n + 1;
f()

}

g();
g();

A file may use fluid variables which have been bound in other files, but
no type information regarding these variable is known, so it is the pro-
grammer’s responsibility to ensure that the types match3.
In the current implementation of Aldor, a fluid variable must have a
binding point at the top level of some file. It is an error to have two fluid
variables of the same name and different types in a program.

3Compare Section 7.1.

112 · Name spaces

CHAPTER 9

Generators

Consider the problem of traversing a list to operate on each of its mem-
bers. One might write code such as:

-- Approach 1: tailing
t := L;
while not empty? t repeat {

a := first t;
t := rest t;
f a

}

This approach makes good sense for linked lists, but is too expensive for
lists represented as arrays. Each iteration would have to allocate a new
array in the call to rest, leading to O(#L2) storage use where none is
really necessary.
Alternatively, one could write:

-- Approach 2: indexing
for i in 0..(#L - 1) repeat {

a := L.i;
f a;

}

This approach makes good sense for lists represented as arrays, but is
inappropriate for a linked list representation. Each iteration would need
to traverse the list from the beginning to find the desired element, leading
to O(#L2) time where O(#L) should suffice.
Having seen this, consider the problem of writing a generic program
to operate on some BoundedFiniteDataStructureType structure which
might be represented as an array, as a linked list, or in some other way.
How should loops be written to minimise cost in a generic program?

113

A related problem arises with more sophisticated data structures. Here,
the steps to traverse an object can be rather intricate. The code for a
loop which traverses objects in parallel can be extremely difficult and
error-prone.
How can loops be written which hide the complexity of data representa-
tion?
The answer to both these questions is the same in Aldor, and that is to
use generators.

9.1
Using
generators
in loops

Generators may be used in Aldor to obtain values serially, wherever
required. For example: to compute numbers in a sequence; to access the
components of a composite structure, such as a list, array or hash table;
or to read data from a file.
The simplest way to use a generator in Aldor is with a “for” iterator on
a repeat loop or a collect form:

#include "aldor"
#include "aldorio"

import from MachineInteger;

-- Generators in a for-repeat loop.
import from Generator MachineInteger;
g := generator(1..10);

for i in g repeat { stdout << i << newline }

-- Generators in a for-collect loop.
import from List MachineInteger;
h := generator(1..10);

l := [i*i for i in h];

stdout << l << newline

In fact, this form of using generators is so common, that if the expres-
sion E in “for v in E.” does not belong to a generator type, then an
implicit call is made to an appropriate “generator” function. This is
equivalent to writing “for v in generator E.”
With this, our example may be written as:

#include "aldor"
#include "aldorio"

-- Implicit generators in a for-repeat loop.
import from MachineInteger;

for i in 1..10 repeat { stdout << i << newline }

-- Implicit generators in a for-collect loop.
import from List MachineInteger;

114 · Generators

l := [i*i for i in 1..10];

stdout << l << newline

In Aldor all for-repeat and for-collect loops are based on gener-
ators. There is no built in method to traverse integer ranges, lists or
other structures. It is the compiler’s responsibility to make the use of
generators reasonably efficient.
Generators are normal values in Aldor and, once created, may be passed
as arguments to functions which consume them gradually, according to
a cooperative scheme.

9.2
Using
generators
via
functions

Sometimes it is desired to use the values in a generator gradually, with
some logic that is not naturally expressed as a for loop.
One might imagine writing a function, such as the following, to extract
elements from a generator one at a time.

first(g: Generator S): Union(value: S, nil: Pointer) == {
for s in g repeat return s;
nil

}

Here the loop body would be evaluated zero or one times, and the func-
tion would return nil or the first value in the generator. Subsequent
calls would extract the remaining values.
The standard Aldor library provides a type with a single function called
next!. Each time this function is called, it returns the next available
value in the generator. When no more value is available, a GeneratorException
is thrown. To use this function one must have an include command for
libaldor and import from the appropriate generator type, e.g.:

#include "aldor"
import from Generator T;
...

With this, the following function becomes available:
• next!: Generator T -> T

The function “step!” runs the generator code until the next value, or
the end of the generator, is reached. After step! has been called, the
function “empty?” may be used to test whether the generator has been
exhausted. If empty? returns false, then the “value” function may be
called to extract the current value from the generator.
The expression “for x in g repeat E” is equivalent to

9.2. Using generators via functions · 115

try
repeat {

x := next! g;
E

} where { local x };
catch EXCEPTION in {

EXCEPTION has GeneratorExceptionType => {}
}

9.3
Creating
generators

Generators are ultimately created with a “generate” expression in one
of the following forms:

generate E
generate to n of E

The first form, without the “to” part, is the most commonly used.
The body, E, of a generate is an expression containing some number
of “yield” forms, each with some argument. The evaluation of the
generate proceeds as follows:
None of the expressions in the body is evaluated when the generator
is first formed. When the first value is requested from the generator,
the body is evaluated until a yield is encountered. The argument of
the yield is returned as the value of the generator, and evaluation of
the generator is suspended. When another value is requested from the
generator, evaluation resumes from the point where left off, and con-
tinues until the next yield is encountered. Evaluation proceeds in this
way, suspending at yield points and resuming when further values are
requested, until the evaluation of the body expression is complete. Note
that some evaluation may occur after the last yield, before the body has
finished evaluating.
All the yields for a given generate must have the same type of argu-
ment. If all the yields in a particular generate have type T , then the
generate expression has type “Generator(T)”.
If given, the “to” part provides a bound on the number of values which
the generator may provide. If a bound is not given, the compiler is
permitted, but not required, to deduce a bound when it can.
Examples:
generate expressions may have several yields:

generate { yield 1; yield 2; yield 3 }

A yield may appear in a loop:

generate {
while not empty? l repeat {

116 · Generators

yield first l;
l := rest l;

}
}

The generator body may have arbitrary control flow within it. This
encapsulates the logic for traversing a structure. This is an example
from the innards of the HashTable type in the base Aldor library:

generate {
for b in buckv t repeat

for e in b repeat {
c: Cross(Key, Value) := (e.key, e.value);
yield c

}
}

}

In the Base Aldor library, the generator for general IntegerSegment
values (a..b by c) is given as:

generator(s: %): Generator S == generate to size s of {
a := low s;
b := high s;
d := step s;
open? s => repeat (yield a; a := a + d);
d >= 0 => while a <= b repeat (yield a; a := a + d);
d < 0 => while a >= b repeat (yield a; a := a + d);

}

Since it might not be obvious, we note that recursive functions may
be used to implement generators. This is extracted from the “Tree”
example in Section 21.8:

preorder(t: %): Generator S == generate {
if not empty? t then {

yield node t;
for n in preorder left t repeat yield n;
for n in preorder right t repeat yield n;

}
}

Finally, we observe that when using the base library it is possible to
form generators by providing a set of empty?, step!, value and bound
functions. These would normally operate with a shared environment:

#include "aldor"
#include "aldorio"

GI ==> Generator Integer;
import from GI;

everyOther(g: GI): GI == {

9.3. Creating generators · 117

s!(): () == {step! g; step! g}
e?(): Boolean == empty? g;
v(): Integer == value g;
b(): MachineInteger == {n := bound g; n = -1 => n; n quo 2}

generator(e?, s!, v, b)
}

gg := everyOther generator(1..20);
for x in gg repeat stdout << x << newline

118 · Generators

CHAPTER 10

Post facto extensions

One of the real problems in reusing code is how to use programs from
independently developed libraries at the same time.
Every library has assumptions about the basic behaviour of the values
it uses. To use values created by functions of one library as input to
functions of a second library, it is usually necessary to convert the values
to types derived from the second library.
As the number of libraries used by an application increases, the conver-
sion problem becomes more significant. For example, say a library defines
a concept of “FancyOutput”, of which the basic Integer type could be
an instance, if only it supported a few extra operations. The way this
would be handled in other languages would be to derive a new type from
Integer, say “FancyOutputInteger”, and to use fancy integers in the
program.
Now suppose we wish to use a library for differential operators, which
defines a concept of “DifferentialRing”. Now the integers would be
a suitable instance, if only they provided a differentiation operator. It
is a trivial matter to supply a differentiation operator for the set of
integers: it would just return 0. At this point we end up with the new
type “DifferentiableFancyOutputInteger” which may now be used
in place of “Integer” when using the differential operator library at the
same time as fancy output.
Aside from being ugly, this leads to a second problem: Each library may
refer to the original type Integer, or its own derived version of it, in
particular situations, and the DifferentiableFancyIntegers will need
to be converted to FancyIntegers or Integers and vice versa.
This problem gets worse when both libraries use the same base type,
String or Window for instance, with different sets of operations.
This problem is particularly acute in certain applications. In mathemat-

119

ics, for example, certain basic sets are simple instances of very many
abstract concepts. It is impossible for the Aldor library to anticipate all
the mathematical contexts in which the type Integer may be expected
to perform.
The way Aldor solves the problem just described is to allow programs to
supply enhancements to already existing types via post facto extensions.

10.1
Extending
types

If T is a type-valued constant, then its meaning may be extended with
a definition of the form:

extend T : C == D

Here C is a new category to which T will now belong and D is a pack-
age providing implementations for the newly required exports. The new
operations cannot see the internal representation of T .
Taking the earlier example, the type Integer can be made to satisfy
the new categories FancyOutput and DifferentialRing by providing
appropriate extensions:

extend Integer: FancyOutput == add {
box(n: Integer): BoundingBox == [1, ndigits n, 0, 0]

}

extend Integer: DifferentialRing == add {
differentiate(n: Integer): Integer == 0

}

then these extensions may be used, independently or together,
Extensions are made visible in the same manner as other definitions: by
importing the package which provides them. This allows programs using
extensions to be statically checked and more heavily optimised.
Extensions may be private to a particular application, or be exported by
a library. In the case where a library provides an extension, the clients
of the library see the extension applied to the type.
Within a given context, a type-valued constant has as its type the Join
of the categories of the original value all the extensions. Its value is
obtained by add-ing the extensions to the original value.
If two extensions have intersecting categories, then they may not be
imported in the same scope.

120 · Post facto extensions

10.2
Extending
functions

In typical Aldor applications many of the types are provided by functions,
so an effective extension mechanism must provide some way to extend
these types as well.
One might imagine a solution which took a particular function result,
say “List(Integer)” and modified it. The problem with this is that
while that one list type would be extended, the other list types would
not be. It is really the meaning of List which should be extended.
To extend the meaning of a function-valued constant in Aldor one writes:

extend fdef

where “fdef ” has the form of a definition of the function being extended.
For example:

#include "aldor"
#include "aldorio"

-- Partial(S) is a type which includes values in ‘S’ as well
-- as a special ‘failed’ value.
--
-- This extension does two things:
-- 1. It allows ‘failed’ to be treated as ‘false’ in ‘if’ statements.
-- 2. It causes an import from Partial(S) to also import from S.

extend Partial(S: Type): with {
test: % -> Boolean;

export from S;
}
== add {

test(x: %): Boolean == not failed? x
}

PI ==> Partial Integer;
import from PI;

i := failed; j := [7];

stdout << (if i then "oops" else "ok") << newline;
stdout << (if j then "ok" else "oops") << newline;

Any form of function definition is allowed, e.g.:

extend F(S: Type): C(S) == ...;

extend G: (S: Type) -> C(S) == (S: Type): C(S) +-> ...;

extend H(n: Integer, S: PrimitiveType) (R: ArithmeticType) ==;

Function extensions are meaningful when the argument and result types
of the extension are compatible with the argument and result types of
the original meaning.
In the current implementation of the language, the extension argument
types are compatible if they are the same as the argument types of the
orginal function.

10.2. Extending functions · 121

Corresponding result types are compatible if they are the same or both
are subtypes of the same type. Additionally, the (base) type must have
an appropriate method to combine values. At present only functions and
types provide a combination method.
In practice this means that types, or functions producing types, or func-
tions producing functions producing types, etc. may be extended.
Type values are combined by add and their types are combined with
Join. Function values are combined by producing a new function which
runs all of them and combines the result (recursively, if necessary).

10.3
Extending
the base
Aldor
library

The base Aldor library builds many of its types in layers, using “extend”.
For instance, it extends Boolean, Generator(S) and Tuple(S), which
are language-defined, and creates Integer and TextWriter in stages.
An application which introduces a new concept can provide a file to
extend an existing library to support the new concept.
Suppose, for instance, that an application needed to determine how much
dynamically allocated memory was used by data structures. Then it
could extend the Aldor library with a file which began with code resem-
bling that in Figure 10.3.
With this, it would now be possible to ask about the sizes of values
belonging to the types “Integer”, “List(Integer)”, and so on.

Figure 10.1: Post facto extension of the Base Aldor library.

122 · Post facto extensions

CHAPTER 11

Exceptions

11.1
Introduction

What happens when something goes wrong during a call to a function?
For example, the system detects an error in its arguments (e.g. divide
by zero), or that it can’t perform a particular operation (e.g. opening a
file).
Using normal call and return code, you have two options: the function
can cause the program to halt, e.g. by a call to “error”; or it can return
a partial or union type which includes a flag to say that the operation
failed. The former may be a bit extreme, especially if the program is in
some way interactive. The latter option then causes every function that
calls it to have to be aware of and check for the failure case, which may
or may not be useful. It certainly gets long-winded if the failure case has
to be propagated through a deep call-chain.
A more concise way of signalling error conditions is provided by the
exceptions mechanism. There are four parts to the mechanism:

1. Throwing (or raising) an exception
2. Catching exceptions that we are interested in
3. Declaring which exceptions may be thrown by an expression
4. Defining exception objects

123

11.2
Throwing
Exceptions

The syntax for raising an error is:
throw exception

where exception is an expression evaluating to an exception object. When
an exception is thrown, execution of the current function halts, and con-
trol is passed to the most recent handler (note that this uses dynamic
scope for determining “most recent”). The type of an throw expression
is Exit (but see later) — i.e. no value is created by the expression, but
control does not pass to the expression (compare this with the return
statement, for example). A throw statement is therefore a way of caus-
ing a function to terminate abnormally.

11.3
Catching
Exceptions

To catch an exception the syntax is:
try Expr catch id in handler finally stmts

where Expr is the expression we are protecting, id is an identifier, handler
is an (optional) error handler and stmts are some (optional) statements
to do any resource freeing on abnormal exits.
When a handler is executed, the id is bound to whatever exception was
raised. The handler block is then evaluated.
Typically it will look something like:

try ... catch E in {
E has ZeroDivide(Integer) => ...
E has BadReduction => ...
E has FileException => ...
true => throw E;
never;

}

Where each item on the right hand side of the has denotes an exception
type. The last line is to ensure that the statement compiles successfully.
Each branch of the handler block (the parts after =>) should evaluate to
the same type as that of the expression protected by the handler.
This is so that one can do:
n := try divide(a,x) catch E in {E has ZeroDivide => 22; ... }

which will attempt the division, and if successful assign the result to n,
otherwise if a division by zero exception is raised, then n will have the
value 22.
After the handler has been executed, the stmts in the finally part of
the try expression are evaluated. These are guaranteed to be evaluated
even if the handler itself raises an exception.
The typical reason to use an finally block is to deallocate any resources
the function may have allocated, for example:

124 · Exceptions

f := open(file);
try doWonderfulThings(f, data) finally close!(f);

Note that the ’catch id in ...’ part is also optional provided that a
finally part is supplied.
This will ensure that the file is always closed regardless of what exceptions
are thrown by doWonderfulThings.

11.4
Specifying
Exceptions

It is possible to declare what exceptions are thrown by a particular ex-
pression. This is done using the throw keyword as an infix operator (the
two uses are rarely confused). The operator takes two arguments, a base
type and a (possible empty) comma-separated list of exception types.
Typically, the throw keyword is applied to the return types of functions
to indicate which exceptions they can raise, for example:

foo:(args) -> returns throw (x1,x2,x3,...)
This indicates that foo may only raise exceptions of types x1,x2,x3 etc.
The programs behaviour is undefined if other exceptions are raised. To
indicate that a function raises no exceptions, the tuple should be empty.
If there is no throw clause on the return type, then the compiler assumes
that any exception may be raised by the function. This does lead to
some unsafe code — for example:

justDie(): Integer == throw ZeroDivide;

badIdea(): Integer throw () == justDie();

Here badIdea indicates that it will not raise an exception, while justDie
will always raise an error. The compiler may warn the user in this situ-
ation.
The compiler will check if any exceptions are explicitly raised that do
not satisfy the functions signature, for example:

foo(): Integer throw ZeroDivide == {
throw FileError;

}

will not compile. This also works within try blocks:
bar(): () throw Ex1 == {

try zzz() catch E in {
E has ExA => throw ZeroDivide; --- error
E has ExB => throw Ex1; --- OK
true => throw E --- error
never

}
}

The throw qualifier on types works just like any other type constructor,
and so you can use it as part of a type as normal:

11.4. Specifying Exceptions · 125

foo(fn: Integer -> Integer throw ()): () == ...

indicates that the argument to foo must be a function that never raises
an exception. Naturally, there are only a few places where it makes sense
to use these types.
NB: We simplified things earlier when we said that the type of an throw
statement was Exit — the actual type of “throw X” is Exit throw
typeof(X). Where typeof(X) indicates the exact type of the exception
expression. This indicates that flow of control stops, but the exception
X may be raised.

11.5
Defining
Exceptions

An exception definition is made up of two parts — a category defini-
tion and a domain definition. The category definition provides a means
to specify related exceptions (so that ZeroDivideException may inherit
from ArithmeticException for example), and the domain definition pro-
vides a mechanism for creating the exception.
For example,

define ZeroDivideException: Category == ArithmeticException with;
ZeroDivide: ZeroDivideException == add;

If ZeroDivide is defined this way, then any handler with a clause “E has
ArithmeticException” will also catch ZeroDivide exceptions. There is
an is keyword in the language if you need to do exact matching, but it
shouldn’t be needed that often.
This mechanism also allows one to create parameterised exceptions:

define ZeroDivideException(R:Ring):Category == ArithmeticException with;
ZeroDivide(R:Ring):ZeroDivide(R)@Category == add;

and to have values defined within the exception:

define FileException: Category == ArithmeticException with {
name(): String;

}

FileError(vvv: String): FileException == add {
name(): String == vvv;

}

In fact, there is a myriad of ways to insert values into exceptions:

foo(): () == {
...
throw (add {name(): String == <bizzare-calculation>})_

@FileException
...

}

126 · Exceptions

is one, which has the single advantage that name will only be calculated
if it is actually used. Defining a ’lazy’ version of FileException is a
much better thing to do in this situation.
Another example that keeps the add definition simple, but defines rather
a lot of objects, is:

define FileException: Category == Exception with {
name(): String;

}

define FileException(vvv: String): Category ==
FileException@Category with {

default name(): String == vvv;
}

FileError(vvv: String): FileException(vvv) == add;

11.5. Defining Exceptions · 127

CHAPTER 12

Generic tie-ins

Several syntactic constructs are defined in terms of function application
in Aldor: the treatment of literal values, the application of one object to
another, the updating of objects, the interpretation of tests in conditional
statements and the mechanism for generating a set of values for iteration.
This allows user programs to define how these syntactic constructs be-
have in a particular lexical context. The function calls themselves are
treated as standard function calls, so the normal rules apply.

12.1
Literals

Types provide meanings for literal constants by defining functions named
“integer”, “float” or “string” taking values of type Literal. The
type Literal represents the source text of the particular literal. Valid
literal values are described in Section 5.2.
The meaning of string-style literals is determined by what operations

string: Literal -> X

are visible, where “X” may be any type. In libaldor the type String
provides string-style literals.
Both integer and floating point literals are passed in the same way, so
it is legal to call the function string on them. This can be used to
allow numbers to be parsed as strings. For example, the function scan,
from IntegerTypeTools in the Aldor base library, scans a TextReader
stream to find a possible Integer value. The following example is a
possible implementation to create an Integer from a Literal.

integer(l: Literal): Integer == {
import from IntegerTypeTools Integer, String;
scan (string l)::TextReader

}

129

Note that the literal “l” is converted to a string, and then to a TextReader
input stream before scan is called on the result to form a new value.

12.2
Program-
defined
tests

There are several types of expression in which a condition controls the
evaluation of an Aldor program:

if condition then ...

condition => ...

while condition repeat ...

for ... in ... | condition repeat ...

not condition
condition1 and condition2

condition1 or condition2

In many situations, a value can be treated as a condition, even though
it may not be a value from the “Boolean” type. Aldor allows these to
be treated as logical values in the above constructs. If a condition above
produces a value of type T , different from Boolean, and there is a single
function “test: T -> Boolean” in scope, then that “test” function
is implicitly applied to the condition value to determine the outcome of
the test. For example:
#include "aldor"

-- In "aldor" the type List(S) has a function "test" which
-- returns true on non-empty lists.

-- This function determines which of two lists is longer.
LI ==> List Integer;

longer(a: LI, b: LI): LI == {
(a0, b0) := (a, b);
while a and b repeat (a, b) := (rest a, rest b);
if a then a0 else b0

}

12.3
Generator

If an expression traversed by a “for” iterator does not evaluate to a
Generator value, then the operator “generator” is implicitly applied to
the expression. This makes loops more readable if the for is traversing,
for example, a list or an array:

#include "aldor"
#include "aldorio"

import from List Integer, Integer;

ls := [1,2,3,4];

for elem in ls repeat stdout << elem << newline;

The “for elem in ls repeat ...” of the previous example is equiva-
lent to:

130 · Generic tie-ins

for elem in generator ls repeat ...

When List Integer is imported, then the application:
generator: List(Integer) -> Generator(Integer)

comes into the current scope.

12.4
Apply

In the absence of an explicit function named “a”, the application “a(b)”
is treated as a call to the function “apply” with the first argument being
taken to be “a”, and the remaining arguments being taken from the
arguments to the original application. Example:

f(a,b,c) becomes apply(f,a,b,c)

For example, consider a matrix domain over a ring, R. A desirable syntax
for retrieving elements of a particular matrix might be:

mat(a, b)

where a and b are integer indices for the matrix. To achieve this, a
matrix domain would export a function with signature:

apply: (%, Integer, Integer) -> R;

The function is defined in the normal way.

12.5
Set!

If the left hand side of an assignment is an application, the assignment is
treated as an application of the operator set! to the operator of the left
hand side, the operands of the left hand side and the right hand side.

f(a,b) := E becomes set!(f,a,b,E)
f a := E becomes set!(f,a,E)
f.a := E becomes set!(f,a,E)
f.a.b := E becomes set!(f.a,b,E)

As an example, consider the matrix domain above. We would like to
assign into the matrix using a syntax like:

mat(a, b) := 1;

To achieve this, the domain should export a function with signature:

set!: (%, Integer, Integer, R) -> R
++ update and return the previous value of the element

12.4. Apply · 131

As this is just a normal function, there are no restrictions on the return
type or value. In this case a value from R is returned, and the description
indicates which. Note that the description is purely for documentation
purposes, and not used to interpret the program.

12.6
Bracket

An expression of the form:
[Expr]

is treated as an application of the operator “bracket” to Expr.
Example:

#include "aldor"
#include "aldorio"

import from List Integer, Integer;

a := [1,2,3];
b := bracket(1,2,3);

stdout << a << newline; -- Produces: [1,2,3]
stdout << b << newline; -- Produces: [1,2,3]

As can be seen above, this is a useful syntax for creating aggregates of
various types. The value passed to the “bracket” function in this case
is a tuple of the three values 1, 2 and 3.

12.7
Coerce

An expression of the form:
Expr :: T

is treated as an application of the operator coerce to Expr and restricted
to be of type T:

coerce(Expr)@T

This allows types to define their own mechanisms for converting between
types, and enables types to do appropriate error checking.

132 · Generic tie-ins

CHAPTER 13

Source macros

13.1
Macro
definition

Aldor provides a way to define abbreviations, or macros, to make pro-
grams easier to read.
A common use of macros is to abbreviate names or type expressions, as
in the example below. The lines containing “==>” are macro definitions:

-- Abbreviations for frequently used types:
MI ==> MachineInteger;
L T ==> List T;

split(lmi: L MI): Record(first: MI, second: MI, rest: L MI) ==
[first lmi, first rest lmi, rest rest lmi];

-- Abbreviations for long package names:
MStudy ==> LongitudinalStudiesOfMitralValveReplacementPatients;

d0 := intakes()$MStudy;
d1 := examinations()$MStudy;

The left hand side of a macro definition may be either an identifier or an
application. A definition of the form

Op Parms ==> Body
is equivalent to

Op ==> macro Parms +-> Body
and defines a parameterised macro. Any application syntax is permitted
on the original left hand side: prefix, infix, or bracketed. The resulting
right hand side is called a macro function.
This rule is applied until the left hand side is an identifier. Macros
may consequently be defined to receive their arguments in groups, in

133

a “curried” fashion. For example, when P1 and P2 are parameter se-
quences, the definition

Op (P1)(P2) ==> Body
is equivalent to

Op ==> macro (P1) +-> macro (P2) +-> Body
Macro functions may appear directly in the source program, and may be
written with their parameters in groups:

macro (P1)(P2)...(Pn) +-> Body
is equivalent to

macro (P1) +-> macro (P2) +-> ... macro (Pn) +-> Body

13.2
Macro
expansion

The process or replacing the abbreviations with what they stand for is
called macro expansion. Macro expansion works by making substitutions
in the parsed form of programs. Because the substitution is on trees, it
is not necessary to include extra parentheses in macro definitions.
Macro expansion transforms the source syntax trees with the following
steps:
• Record and remove any new macro definitions encountered. A

macro definition is scoped and persists for the remainder of the
“+->”, “where”, “add” or “with” in which it occurs.
• Replace identifiers, if they have macro definitions, with the right-

hand side of their macro definitions.
• Reduce expressions of the form

(macro Parms +-> Body) (Exprs)
by introducing new macro definitions for the formal parameters
and replacing the application with the macro expanded body.

Once macro expansion is complete, the entire program should be free of
macro definitions and macro functions. The process of macro expansion
removes all macro definitions; any remaining unreduced macro functions
are reported as errors.

13.3
Examples

Given the following definitions,
a ==> A1 - A2;
b ==> B;
c ==> C;
d(e,f)(g,h) ==> (e+f)*(g+h);
x + y ==> c(x,y);
f(g,x,y) ==> g(x,y) / g(y,x);

the following expressions expand as shown:

134 · Source macros

a; --> A1 - A2
b; --> B
a + b; --> C(A1 - A2, B)
d(1,2)(3,4); --> C(1,2) * C(3,4)
f(+,u,v); --> C(u,v) / C(v,u)
f((macro (a,b) +-> a), u, v); --> u / v
(macro (a,b)(c)(d) +-> [a,b,c,d])(3,4)(5)(6); --> [3, 4, 5, 6]

13.4
Points of
style

It is often convenient to use macros which are local to a function or
expression. Below, we show a macro “l1?” which is local to the function
“f”.

f(li: List Integer, lp: List Pointer): () == {

l1? x0 ==> (not empty? x and empty? rest x) where x := x0;

if l1? li then ...
if l1? lp then ...
...

}

The purpose of “l1?” is to provide an inexpensive test whether a list
has length one. This example illustrates two additional points:
• Since macros are strictly syntactic substitutions the “l1?” macro

may be applied to different values of different types.
• Since the macro uses the parameter in two places, the best prac-

tice is to introduce a new temporary variable so the argument is
evaluated only once.

If the body of the macro is large, having a “where” at the end of a long
expression can make a program harder to read. A convenient way to
introduce local variables in this case is to make the left-hand side of the
“where” a local macro.

BigBurger(patty1, patty2) ==> BB where {
p1 := patty1;
p2 := patty2;

BB ==> {
if not allBeef? p1 or not allBeef? p2 then

error "Bad food";

b := burger();
b << bottomBun;
b << p1;
b << cheese;
b << lettuce;
b << onions;
b << sauce;
b << middleBun;
b << p2;
b << cheese;
b << lettuce;
b << onions;

13.4. Points of style · 135

b << sauce;
b << topBun;
b

}
}

Just as a macro function
macro Parms +-> Body

is analogous to a function “Parms +-> Body”, a macro definition
Lhs ==> Expr.

is analogous to a definition “Lhs == Expr”. For this reason, a macro
definition may be written in the equivalent form

macro Lhs == Expr.

136 · Source macros

CHAPTER 14

Language-defined types

The Aldor language defines only those types which are required in speci-
fying what the language does. Most of the types which are usually found
in high-level programming languages are delegated to libraries in Aldor.
This allows the library designer maximum flexibility in dressing the basic
types with desired operations.
The language defined types are listed below. Here, n,m ≥ 0.
• Type
• (S1,...,Sn) -> (T1,...,Tm)
• Tuple T
• Cross(T1,...,Tn)
• Enumeration(x1,...,xn)
• Record(T1,...,Tn)
• TrailingArray((U1,...,Un),(V1,...,Vm))
• Union(T1,...,Tn)
• Category
• Join(C1,...,Cn)
• Boolean
• Literal
• Generator T
• Exit
• Foreign I
• Machine
• Ref T
• “Magic Types”

These types are described in the sections which follow.

137

14.1
Type

• Type: Type

“Type” is the type of all data type objects, including itself. Sometimes it
it not possible to tell whether a value is a type. Unless a value has been
explicitly asserted to be a type, then it is not treated as one.
In the example below, the parameter “t” of the function “higher” is a
type in some possible calls but not in others.

#include "aldor"

higher(T: Type, f: T->T, t: T): T == f f t;

-- next next 2
n: Integer == higher(Integer, next, 2);

-- List List Integer
L: PrimitiveType == higher(PrimitiveType, List, Integer);

14.2
(S1,..,Sn)->(T1,..,Tm)

• ->: (Tuple Type, Tuple Type) -> Type

“(S1,..,Sn)->(T1,..,Tm)” is the type for functions which have n ar-
guments and produce m results of the given types. The types Si may
be mutually dependent and may have default values. The types Tj may
depend on Si as well as on each other.
These are a few examples of function types:
I ==> Integer A macro used in these examples.

(I, I) -> () No result — useful for side-effecting functions.
(I, I) -> I One result — most common case.
(I, I) -> (I, I) Two results.
Tuple I -> Tuple I Any number of arguments and any number of

results.
(i: I, n: I) -> I The arguments may be passed by keyword.
(i: I, n: I == 0) -> I The arguments may be passed by keyword, and

the second one has a default value.
(I, n: I)-> IntegerMod n The return type1 depends on an argument value.
(n: I, IntegerMod n)-> I One argument type depends on another argument

value.

14.3
Tuple T

• Tuple: Type -> Type

Tuples provide n-ary, homogeneous products. The language allows ex-
plicit multiple values of the same type or a “Cross” of values of the
same type to be converted to a Tuple. For example, (), (1), (1, 2),
and (1,3,7,8) may all be used where a Tuple(Integer) is expected.
The base Aldor library extends Tuple to provide operations to count the
elements or extract particular ones:

138 · Language-defined types

• length: Tuple S -> MachineInteger

• element: (Tuple S, MachineInteger) -> S

These operations are named differently to the standard “#” and “apply”
to avoid ambiguity between values and singleton tuples. The “element”
operation uses 1-based indexing. Tuple values are not updatable.

14.4
Cross(T1,...,Tn)

• Cross: Tuple Type -> Type

This is the constructor for cross-product types. The language allows
explicit multiple values to be converted to a single cross product value
and vice versa. Here is an example:

-- Conversion of multiple values to a cross product:
ij: Cross(Integer, Integer) := (1, 2);

-- Conversion of a cross product to multiple values:
(i, j) := ij;

-- This gives the same result as n := i + j.
n := + ij;

There are no operations for counting or selecting product components,
and product values are not updatable. The products may be cartesian
or dependent:

Cross(Integer, Integer) -- cartesian product
Cross(n: Integer, IntegerMod(n)) -- dependent product

14.5
Enumeration(x1,...,xn)

• Enumeration: Tuple Type -> Type

Enumerations are types consisting of a fixed set of symbolic values.
A list of names enclosed in single quotes is a short-hand for a call to
Enumeration. For example,

Colour == ’red, green, blue’;

x: Colour := red

One of the common uses of enumerations is for selector functions. The
List(S) domain from the standard Aldor library exports functions called

14.4. Cross(T1,...,Tn) · 139

first, rest, setFirst! and setRest!. These operations could be re-
placed by the following ones:

apply: (%, ’first’) -> S
set!: (%, ’first’, S) -> S
apply: (%, ’rest’) -> %
set!: (%, ’rest’, %) -> %

This allows expressions of the form:

l.first; l.first := s
l.rest; l.rest := l

Separate types ’first’ and ’rest’ are used, rather than one
’first, rest’, to allow strong type checking.
The precise way in which enumerations work may seem a bit strange at
first: the form

’red, green, blue’

is actually a short-hand for the call

Enumeration(red: Type, green: Type, blue: Type)

Notice that this has the same form as a typical call to Record or a call
to “->” with keyword arguments. This provides enumerations without
introducing any extra fundamental ideas into the language.

14.6
Record(T1,...,Tn)

• Record: Tuple Type -> Type

Records provide the basic updatable structure for aggregate data. Each
type argument to Record may be given in any of the following forms:
T or id : T or id : T == v.
A record type Record(T1,...,Tn) exports the following operations:
• bracket: (T1,...,Tn) -> %

• record: (T1,...,Tn) -> %

• explode: % -> (T1,...,Tn)
• dispose!: % -> ()

and, for each argument of the form id : T or id : T == v, the record type
also exports the operations:

140 · Language-defined types

• apply: (%, ’idi’) -> Ti
• set!: (%, ’idi’, Ti) -> Ti

The “bracket” and “record” operations have the same function and
construct new record values.
The “bracket” operation allows records to be constructed with the syn-
tax [1,1], which is nice and concise. More importantly, it allows record
types to be used generically — that is, without disclosing that the het-
erogeneous aggregate is a record type, as opposed to a table or other
structure.
The “record” operation allows documented construction of record val-
ues. This is convenient if there are many aggregate types in scope (lists,
lists of records, records of lists etc.) and the bracket operation becomes
too heavily overloaded for clarity.
The “explode” operation allows record values to be deconstructed into
their constituent parts. This is convenient for use with multiple assign-
ment or passing all the components to a function of an equal number of
arguments.
The “dispose!” operation promises that its argument will no longer be
referenced, and on certain platforms permits the memory to be reused
immediately. It is not necessary to use this function: if you don’t, storage
will be garbage collected periodically. The choice often boils down to
debugability versus speed.
The “apply” and “set!” operations allow the record fields to be ex-
tracted and reset. This may be done with either explicit calls to these
functions or implicit calls arising from the forms “r.i” or “r.i := j”.
The substitution of the type arguments into the exported operations
uses the original form in which the argument is given. As a consequence,
record constructors support keyword arguments and arguments with de-
fault values.
To be concrete, we give a few examples.

Record(I, DF) The simplest (and least useful) way to use Record is to call it with simple
type expressions, giving neither field names nor default values with the
arguments.
An example would be Record(Integer, DoubleFloat). In this case no
“apply” or “set!” operations are exported, and the behaviour of the
record type is very similar to that of a corresponding call to Cross.
• bracket: (Integer, DoubleFloat) -> %

• record: (Integer, DoubleFloat) -> %

• explode: % -> (Integer, DoubleFloat)

• dispose!: % -> ()

14.6. Record(T1,...,Tn) · 141

Record(i:I,
x:DF)

The call Record(i: Integer, x: DoubleFloat) provides a record type
with the following operations:
• bracket: (i: Integer, x: DoubleFloat) -> %

• record: (i: Integer, x: DoubleFloat) -> %

• explode: % -> (Integer, DoubleFloat)

• dispose!: % -> ()

• apply: (%, ’i’) -> Integer

• apply: (%, ’x’) -> DoubleFloat

• set!: (%, ’i’, Integer) -> Integer

• set!: (%, ’x’, DoubleFloat) -> DoubleFloat

This allows expressions of the form

r := [3, 4.0];
r := [i == 3, x == 4.0]
r := [x == 4.0, i == 3]

(vi, vx) := explode r

r.i := 7
r.x := 32.0

To be painstakingly correct, the exports are not precisely as shown above.
The actual exports are:
• bracket: (i: Integer, x: DoubleFloat) -> %

• record: (i: Integer, x: DoubleFloat) -> %

• explode: % -> (i: Integer, x: DoubleFloat)

• dispose!: % -> ()

• apply: (%, ’i’) -> (i: Integer)

• apply: (%, ’x’) -> (x: DoubleFloat)

• set!: (%, ’i’, i: Integer)) -> (i: Integer)

• set!: (%, ’x’, x: DoubleFloat) -> (x: DoubleFloat)

What is happening is that the exports from the record type all support
keyword arguments as a consequence of uniform substitution. This really
only useful for the “bracket” and “record” operations, but it is cleaner
to be completely uniform.

Record(i:I==7,
x:DF==0)

If argument types to Record are given with default values, for example
Record(i: Integer == 7, x: DoubleFloat == 0), then the uniform
substitution yields the following construction operations:
• bracket: (i: Integer == 7, x: DoubleFloat == 0) -> %

• record: (i: Integer == 7, x: DoubleFloat == 0) -> %

Now it is no longer necessary to supply all the fields when constructing
new values:

r := [5]; -- Same as r := [5, 0]
r := [.01]; -- Same as r := [7, .01]
r := []; -- Same as r := [7, 0]

142 · Language-defined types

14.7
TrailingArray((U1,...,Un),(V1,...,Vm))

• TrailingArray: (Tuple Type,Tuple Type) -> Type

Trailing arrays are an aggregate data type consisting of two parts; a
header, and an array of objects immediately following. The representa-
tion for this is a single block of memory, the array immediately following
the header. It is up to the user to ensure that accesses to the trailing
part of the structure are correct.
For example, a polynomial could be represented as:
TrailingArray(sz: Integer , (coef: R, deg: NNI))

This would create a data structure looking like:
sz coef deg coef deg coef deg . . .

The advantage of this representation is that the object is created by a
single allocation, and that there is no overhead for data pointers (as there
would be in a representation using a list of records. For example, the
domain
Record(sz: Integer, tail: PrimArray Record(r: R, deg: NNI))

contains exactly the same information, but looks like:
sz tail

↓
0 1 2 . . .
↓ ↓ ↓

coef deg coef deg coef deg . . .

Usage TrailingArray(U, V)

U and V are tuples of types, and so take the form ‘(T1, T2, ...)’, or simply
‘T1’ if there is only a single type in the tuple. Assume that U is ‘(u1: U1,
u2: U2, . . .)’
The domain exports the following functions:
The following are equivalent to the exports of Record(U) :
• apply: (%, ’un’) -> Un
• set!: (%, ’un’, Un) -> Un

Trailing part access:
• apply: (%, MachineInteger, ’vn’) -> Vn
• set!: (%, MachineInteger, ’vn’, Vn) -> Vn

Allocation and disposal:
• bracket: (MachineInteger, Cross U, Cross V) -> %

14.7. TrailingArray((U1,...,Un),(V1,...,Vm)) · 143

• trailing: (MachineInteger, Cross U, Cross V) -> %

• dispose!: % -> ()

The allocation functions take 3 arguments: a size, and an initial value
for both the header and trailing parts. The trailing part argument is
ignored at the moment. These have to be filled in by the user, and the
initial value of the trailing parts is undefined.
Currently the datatype does not support dependent types at all.

14.8
Union(T1,...,Tn)

• Union: Tuple Type -> Type

The Union constructor provides types which can be used to represent
values belonging to any one of several alternative types.
If a function were to return either an integer or a floating point number,
then a type such as Union(int: Integer, flo: DoubleFloat) could
be used. This type would then provide the following operations:
• bracket: (int: Integer) -> %

• bracket: (flo: DoubleFloat) -> %

• union: (int: Integer) -> %

• union: (flo: DoubleFloat) -> %

• case: (%, ’int’) -> Boolean

• case: (%, ’flo’) -> Boolean

• apply: (%, ’int’) -> Integer

• apply: (%, ’flo’) -> DoubleFloat

• set!: (%, ’int’, Integer) -> Integer

• set!: (%, ’flo’, DoubleFloat) -> DoubleFloat

• dispose!: % -> ()

That is, for each argument, id : T , the union type exports the following
operations:
• bracket: (id: T) -> %

• union: (id: T) -> %

• case: (%, ’id’) -> Boolean

• apply: (%, ’id’) -> T

• set!: (%, ’id’, T) -> %

Just as with record types, constructors are available both with a generic
name (“bracket”) and a type-specific name (“union”). These form
union values from values belonging to the branch types.
The “case” operation tests whether the union value is in the given
branch. The “apply” operation extracts the value and the “set!” op-
eration modifies the value of an existing union.

144 · Language-defined types

Example:

import from Union(num: Integer, rec: Record(c: Character, s: String));

-- Generic constructors
u := [3];
u := [[char "c", "hello"]];

-- Specially named constructors
u := union 3;
u := union record(char "c", "hello");

-- Construction using field names
u := [num == 3]
u := union(rec == record(char "c", "bye"));

-- Testing the case of a union.
u case num; -- This returns false now.
u case rec; -- This returns true now.

-- Access the union value as a record.
h := u.rec.s;

Using the constructors with keyword arguments is particularly useful
when more than one branch of a union has the same type:

MyType(R: Type, E: Type): with {
fun: Union(coef: R, expon: E) -> %;

} == ...

-- This import causes both union branches to be ‘Integer’.
import from MyType(Integer, Integer);

fun [coef == 7];
fun [expon == 7];

14.9
Category

• Category: Type

Often it is desired to work with some specialised collection of types.
Each subtype of Type in Aldor is a value which, itself, belongs to the type
“Category”. Categories allow parameterised constructions to specify the
requirements on type-valued parameters. A type satisfies a category if it
provides all the required exports.
The keyword “with” is used to form basic Category values and it is
possible to test whether a type satisfies a category at evaluation time,
using “has”. For more discussion on categories, see Section 7.9.

14.10
Join(C1,...,Cn)

14.9. Category · 145

• Join: Tuple Category -> Category

The type “Join(C1,...,Cn)” is a category which has the union of all
the exports of the argument categories C1, ... , Cn. Conditional exports
have their conditions ored.

14.11
Boolean

• Boolean: Type

The type “Boolean” is used for the logical values “true” and “false”.
Values of this type are expected in the conditions of “if” and “while”,
and in other forms. If a value in one of these contexts is not of type
“Boolean”, then an implicit call is made to a Boolean-producing function
called “test”. See chapter 12. The base Aldor library extends the basic
Boolean type.

14.12
Literal

• Literal: Type

The type “Literal” is used to pass the textual form of literal constants
as arguments to the constant forming operations “integer”, “float”
and “string”. The result is in a form suitable for use with the exported
conversion operations from the “Machine” package. This allows constant
forming functions to be evaluated at compile time. See chapter 12.

14.13
Generator T

• Generator: Type -> Type

The type Generator T is used to provide values of type T serially to a
“for” iterator. The following program shows a function to consume the
values of a generator:

consume(gg: Generator T, f: T -> ()): () ==
for t in gg repeat

f t;

Values of type Generator T are formed by “generate” expressions. T
is the unified type of the arguments of the yields within the generate.
For more discussion on generators, see chapter 9. The base Aldor li-
brary provides an extension which allows generators to be formed and
manipulated using functions.

14.14
Exit

• Exit: Type

An expression of type Exit does not return to the invoking context, and
hence does not produce a local result. Expressions formed with “break”,
“goto”, “iterate”, “never”, “return” and “yield” all have type Exit
since they do not return directly to the expression containing them.
The unification of type Exit with any other type T is T . This allows a
function to end with a return, e.g.:

146 · Language-defined types

#include "aldor"
f(x: Integer): Integer == { if x < 0 then x := -x; return x }

Variables and defined constants may not have type Exit, but functions
may have Exit as their return type. A function with return type Exit
promises to never return to the caller.
• error: String -> Exit

Having Exit as the return type allows this function to be used in writing
programmer-defined error functions. In the standard Aldor library it
is provided by String. Note that a call to “error” will terminate the
program.
Example:
#include "aldor"

import from String;

errDenom(): Exit ==
error "Wrong denominator";

f(n: Integer, d: Integer): Integer == {
d > 0 => n quo d;
d < 0 => (-n) quo (-d);
errDenom();

}

Notice again that an expression of type Exit may appear in a value
context. A consequence of this is that expressions such as the following
are completely legitimate, but odd:
#include "aldor"

l: List Integer := [2, 3, 4, if n < 10 then 5 else error "Too big"];

f(): Integer == return { return { return 7 } }

14.15
Foreign I

• Foreign: Type

• Foreign: Type -> Type

The type “Foreign” allows programs to receive values from or provide
values to programs which are not written in Aldor. The result of the
function “Foreign” is similar, but uses an interface for a particular lan-
guage or environment.
To refer to values which are not produced by an Aldor program, a qual-
ified “import” statement such as the following is used:

import { DSQRT: DoubleFloat -> DoubleFloat } from Foreign Fortran

To provide values to another environment, a qualified “export” state-
ment is used:

14.15. Foreign I · 147

export { J0: DoubleFloat -> DoubleFloat } to Foreign C;

The environments which are understood, are:
• Builtin: Type

The type “Builtin” can be used as an interface to abstract machine
level operations.
The Aldor compiler, for instance, generates calls to functions for some of
the run-time support. These functions are, themselves, written in Aldor
and made available to the abstract machine with export declarations
such as these:

export {
rtCacheMake: () -> PtrCache;
rtCacheCheck: (PtrCache, Tuple Ptr) -> (Ptr, Boolean);
rtCacheAdd: (PtrCache, Tuple Ptr, Ptr) -> ();

} to Foreign Builtin;

• C: Type

• C: Literal -> Type

The type “C” is used as an interface to functions written in (or call-
compatible with) the C programming language. The type “C filename”
is used as an interface to C functions or macros provided by a particular
header file. For details, see chapter 19.
• Lisp: Type

The type “Lisp” is used as an interface to functions written in Lisp.
This is most useful when Aldor programs are compiled to Lisp code, and
allows access to all the operations of the underlying Lisp system (see
“import” example above).
• Fortran: Type

The type “Fortran” is used as an interface to functions written in For-
tran. For details, see chapter 20.

14.16
Machine

• Machine: with ...

A number of types and operations upon them are provided by “Machine”.
This is the basic vocabulary of hardware-oriented data types out of which
all data values in Aldor are composed.
The types exported by Machine do not themselves export any operations.
Instead, the operations are exported by Machine at the same level as the
types. This is an example of what is known as a multi-sorted algebra in
the literature on type systems.
Most programs do not make any reference to “Machine” or its exports.
In practice, these types and operations are used within low-level libraries
to build a set of richer basic types, which themselves provide relevant
operations.

148 · Language-defined types

The types exported by Machine are described below. The exported op-
erations are listed in Section 15.1.
• XByte, HInt, SInt, BInt: Type

These are integer types of various sizes. The types XByte, HInt, SInt are
unsigned byte, half-precision and single-precision integer types, capable
of representing values in at least the ranges 0 to 255, -32767 to 32767
and -2147483647 to 2147483647, respectively. The type BInt provides a
“big” integer type, which, in principle, may be of any size. In practice,
the size will be limited by considerations such as the amount of memory
available to a program.
• SFlo, DFlo: Type

These are single-precision and double-precision floating point types.
• Bool: Type

This type represents the logical values true and false.
• Char: Type

This type provides characters for natural language text. These should
not be used to store what are logically numbers, as the values may be
translated from one character set to another in moving data across plat-
form.
• Nil, Arr, Rec, Ptr: Type

These provide the basis for composite data structures. Values of type
Nil, Arr, and Rec may be converted to type Ptr as desired.
• Word: Type -> Type

Values of types SInt, SFlo and Ptr may be converted to this type.

14.17
Ref T

• Ref: Type

This type is mainly used when interfacing Aldor with Fortran, as de-
scribed in chapter 20. In effect, it allows a reference to an object to be
passed as a parameter, rather than a copy of the object itself. This is
particularly useful when dealing with Fortran routines since they often
update their arguments to return results.
In reality, when calling a Fortran routine with a Ref(T) argument, the
compiler passes a copy of the initial value to the Fortran code and on
exit copies the final value back into the appropriate location (so-called
copy in, copy out semantics). Not declaring a parameter to a Fortran
routine to be a Ref(T) is legal even if that routine updates it, it simply
means that the new value is not visible to Aldor.
When passing an Aldor routine to a Fortran program, it is necessary to
be a bit more careful and use the correct operations to update the values
of those parameters declared to be of type Ref(T).

14.17. Ref T · 149

This type has the following exports:
• ref: T -> %

• deref: % -> T

• update!: (%,T) -> T

14.18
Magic
Types

In addition to the types defined by the language, there are a small number
of domains which need to be present for the interpreter and runtime to
function properly. Thus if a user wishes to replace all the standard
libraries, they need to provide compatible versions.
The domains are:
• FileName
• Pointer
• MachineInteger
• TextWriter

150 · Language-defined types

CHAPTER 15

Standard interfaces

15.1
The
machine
interface

We provide here a detailed list of the exports from the “Machine” pack-
age. This package provides the basic machine-level types and operations
on them to Aldor.
• Bool, Char, Nil, Ptr, Arr, Rec, Word: Type

• XByte, HInt, SInt, BInt, SFlo, DFlo: Type

These are the types provided by “Machine”. They are described in Sec-
tion 14.16.
• true, false: Bool

• space, tab, newline: Char

• nil: Ptr

• 0, 1: XByte

• 0, 1: SInt

• 0, 1: HInt

• 0, 1: BInt

• 0, 1: SFlo

• 0, 1: DFlo

• min, max: Char

• min, max: XByte

• min, max: HInt

• min, max: SInt

• min, max: SFlo

• min, max: DFlo

• epsilon: SFlo

• epsilon: DFlo

These are special values of the various types: “min” and “max” are the
smallest (most negative) and largest (most positive) values belonging to
the finite arithmetic types; “epsilon” is the smallest number ε such that
1 + ε is distinguishable from 1 in floating point arithmetic.

151

• nil?: Ptr -> Bool

• digit?, letter?: Char -> Bool

• zero?, positive?, negative?: SInt -> Bool

• zero?, positive?, negative?: BInt -> Bool

• zero?, positive?, negative?: SFlo -> Bool

• zero?, positive?, negative?: DFlo -> Bool

• even?, odd?: BInt -> Bool

• even?, odd?: SInt -> Bool

• single?: BInt -> Bool

These operations provide various tests to inquire about values. The
“single?” function tests whether a BInt value can be represented as a
member of SInt.
• =, ~=, <, <=: (Bool, Bool) -> Bool

• =, ~=, <, <=: (Char, Char) -> Bool

• =, ~=, <, <=: (SInt, SInt) -> Bool

• =, ~=, <, <=: (BInt, BInt) -> Bool

• =, ~=, <, <=: (SFlo, SFlo) -> Bool

• =, ~=, <, <=: (DFlo, DFlo) -> Bool

• =, ~=: (Ptr, Ptr) -> Bool

These functions provide tests for equality, inequality and order.
• upper, lower: Char -> Char

• char: SInt -> Char

• ord: Char -> SInt

These operations manipulate character data. The “upper” and “lower”
operations change the case of letters, and leave characters which are
not letters unchanged. The “ord” and “char” are inverse operations
mapping between character and integer values.
• +, -, *: (SInt, SInt) -> SInt

• +, -, *: (BInt, BInt) -> BInt

• +, -, *: (SFlo, SFlo) -> SFlo

• +, -, *: (DFlo, DFlo) -> DFlo

• /: (SFlo, SFlo) -> SFlo

• /: (DFlo, DFlo) -> DFlo

• ^: (BInt, SInt) -> BInt

• ^: (BInt, BInt) -> BInt

These are the arithmetic operations of addition, subtraction, multiplica-
tion, division and exponentiation.
• * +: (SInt, SInt, SInt) -> SInt

• * +: (BInt, BInt, BInt) -> BInt

• * +: (SFlo, SFlo, SFlo) -> SFlo

• * +: (DFlo, DFlo, DFlo) -> DFlo

These are “multiply-add” operations: _*_+(a,b,c) is mathematically
equivalent to a*b + c but may be faster or have less rounding error.
• quo, rem, mod, gcd: (SInt, SInt) -> SInt

• quo, rem, mod, gcd: (BInt, BInt) -> BInt

152 · Standard interfaces

• divide: (SInt, SInt) -> (SInt, SInt)

• divide: (BInt, BInt) -> (BInt, BInt)

These are operations related to integer division. The “divide” opera-
tions return a quotient-remainder pair.
• mod +, mod -, mod *: (SInt, SInt, SInt) -> SInt

• mod *inv: (SInt, SInt, SInt, DFlo) -> SInt

These operations perform arithmetic modulo their third arguments. The
“mod *inv” operation is equivalent to “mod *” but expects an accurate
floating point approximation to the inverse of the modulus as its last
argument.
• ~: Bool -> Bool

• ~: SInt -> SInt

• /\: (Bool, Bool) -> Bool

• /\: (SInt, SInt) -> SInt

• \/: (Bool, Bool) -> Bool

• \/: (SInt, SInt) -> SInt

These are bit-wise logical operations.
• length: SInt -> SInt

• length: BInt -> SInt

• bit: (SInt, SInt) -> Bool

• bit: (BInt, SInt) -> Bool

• shiftUp, shiftDown: (SInt, SInt) -> SInt

• shiftUp, shiftDown: (BInt, SInt) -> BInt

These functions provide access to the bits in the base-2 representation of
integers.
• next, prev: SInt -> SInt

• next, prev: BInt -> BInt

• next, prev: SFlo -> SFlo

• next, prev: DFlo -> DFlo

These functions provide next and previous values of the given type. For
example, “next 1” is 2 for SInt and BInt values, but might be approx-
imately 1.0000000000000002220446 for DFlo, depending on the plat-
form.
• double *: (Word, Word) -> (Word, Word)

• doubleDivide: (Word, Word, Word) -> (Word, Word)

• plusStep: (Word, Word, Word) -> (Word, Word)

• timesStep: (Word, Word, Word, Word) -> (Word, Word)

These are the basic operations underpinning multi-word arithmetic.The
first two functions provide double word integer multiply and divide op-
erations. The double word multiply instruction returns its results as a
pair. The double word division accepts the dividend as a pair, passed as
the first two arguments, the divisor as the third argument, and returns
the quotient and remainder. The “plusStep” operation adds two values
and a carry to produce a result and a carry. The “timesStep” operation
computes the product of its first two arguments, adds in the other two,

15.1. The machine interface · 153

and represents the result as a word pair. This may be summarised as:

double_*: (rH, rL) = divide(a * b, wordsize)
plusStep: (kout, r) = divide(a + b + kin, wordsize)
timesStep: (rHout, rL) = divide(a * b + c + rHin, wordsize)

• assemble: (SInt, SInt, Word) -> SFlo

• assemble: (SInt, SInt, Word, Word) -> DFlo

• dissemble: SFlo -> (SInt, SInt, Word)

• dissemble: DFlo -> (SInt, SInt, Word, Word)

These operations allow manipulation of the sign s = ±1, exponent e, and
mantissa x of floating point numbers, f = s× x× 2e.
• nearest, zero, up, down, any: () -> SInt

• round: SFlo -> BInt

• round: DFlo -> BInt

• round +, round -, round *, round /: (SFlo, SFlo, SInt) -> SFlo

• round +, round -, round *, round /: (DFlo, DFlo, SInt) -> DFlo

These provide rounded floating point arithmetic.The third argument of
the round_op functions is a rounding mode, as supplied by Bnearest,
Bzero (toward zero), Bup (toward plus infinity), Bdown (toward minus
infinity), or Bany (doesn’t matter).
• convert: SFlo -> DFlo

• convert: DFlo -> SFlo

• convert: XByte -> SInt

• convert: SInt -> XByte

• convert: HInt -> SInt

• convert: SInt -> HInt

• convert: SInt -> BInt

• convert: BInt -> SInt

• convert: SInt -> SFlo

• convert: SInt -> DFlo

• convert: BInt -> SFlo

• convert: BInt -> DFlo

• convert: Ptr -> SInt

• convert: SInt -> Ptr

• convert: Arr -> SFlo

• convert: Arr -> DFlo

• convert: Arr -> SInt

• convert: Arr -> BInt

These functions convert values between the various Machine types. Most
of the operations may be accomplished by simply padding or narrowing
the internal representation of values. Others such as the integer to float-
ing point conversion are more complex.
• format: (SInt, Arr, SInt) -> SInt

• format: (BInt, Arr, SInt) -> SInt

• format: (SFlo, Arr, SInt) -> SInt

154 · Standard interfaces

• format: (DFlo, Arr, SInt) -> SInt

• scan: (Arr, SInt) -> (SFlo, SInt)

• scan: (Arr, SInt) -> (DFlo, SInt)

• scan: (Arr, SInt) -> (SInt, SInt)

• scan: (Arr, SInt) -> (BInt, SInt)

These operations allow the conversion of numeric data to and from a
textual form.
• array: (E: Type) -> (E, SInt) -> Arr

• get: (E: Type) -> (Arr, SInt) -> E

• set!: (E: Type) -> (Arr, SInt, E) -> E

These operations allow the implementation of array types.
• dispose!: Arr -> ()

• dispose!: BInt -> ()

Calling one of these operations indicates that the storage for the argu-
ment will no longer be used. On some platforms this makes the storage
available for immediate re-use, while on others it does not become avail-
able until after the next garbage collection. If a program does not make
calls to “dispose!”, then the storage is reclaimed by garbage collection.
• RTE: () -> SInt

• OS: () -> SInt

These operations allow programs to inquire about the platform on which
they are running.
The “RTE” operation indicates the run time environment. This is some-
times useful in selecting between alternative foreign imports. The fol-
lowing values may be returned:
0 The environment cannot be determined.
1 The program is linked as a C-based application.
2 The program is running on top of a Common Lisp system.

The “OS” operation specifies the operating system. This is sometimes
useful in understanding how to parse file names, for example. The values
below correspond to the given operating systems:

OS() quo 1000 Operating system
0 Cannot be determined.
1 A Unix derivative.
2 IBM VM/CMS.
3 OS/2.
4 DOS for IBM PC compatibles.
5 Microsoft Windows.
6 DEC VMS.
7 Macintosh System 7

• halt: SInt -> Exit

Finally, this operation terminates the execution of a program. On plat-
forms which support it, the integer argument is returned to the calling

15.1. The machine interface · 155

environment.

15.2
Standard
libraries

Programs will normally use more than just the language-defined types.
The example programs in this guide make use of the standard Aldor
library, also called libaldor.
The standard Aldor library provides a set of basic types for numbers,
data structures, objects, input, output and so on. This library should be
used when developing stand-alone programs, or programs to link with C-
or Fortran-based applications.
The simplest way to make the base Aldor library available within an
Aldor is to use a line of the form

#include "aldor"

This incorporates the text of the standard header file “aldor.as” into
the program being compiled.
The standard “aldorio.as” can also be included:

#include "aldor"
#include "aldorio"

While “aldor.as” makes the library visible, this extra include file also
defines a few standard macros and imports a few basic operations from
types in the library. So, for example, after including these files, “stdout”
and “<<” have meanings.
This header file uses a #library command to make the library archive
“libaldor.al” available as a package called “aldorlib” within the pro-
gram. Normally it is not necessary to use the name “aldorlib” at
all, but if you are using other libraries which introduce colliding ex-
ports, you can disambiguate the collisions by referring to the base li-
brary entities with a $-qualification, such as “Integer$aldorlib” or
“+$Integer$aldorlib”.

156 · Standard interfaces

PART III

The Aldor compiler

CHAPTER 16

Understanding messages

The Aldor compiler may display messages of various sorts, including er-
rors, warnings and remarks about the program being compiled. This
section is a guide to understanding the format and controlling the gen-
eration of Aldor messages.
A complete list of the messages produced by the compiler may be found
in chapter 25.

16.1
Aldor error
messages

Even a particularly skilled programmer will have to deal with compiler
error messages at some point. Upon initial encounter, these messages
often seem confusing. However, with practice their meaning will become
clear. The Aldor compiler tries to give messages which are reasonably
brief, but still informative. Although more detailed messages may be
useful to novice programmers, most beginners quickly move past the ini-
tial desire for more detailed messages. The following paragraphs describe
the components of the messages produced by the Aldor compiler.

Format of Aldor
error messages

Each message produced by the Aldor compiler is assigned a line and a
column position based on the place in the source text of the program as-
sociated with the message. Then, for each source line for which messages
have been generated, the compiler reports the source line, a line contain-
ing pointers to the column assigned to each message, and a description
of each message which appears for the source line.
Each source line is reported by showing the source file name in which the
line appears (enclosed in quotation marks), the line number within the
file, followed by a colon (:), and then the text of the line itself.
After the source line is reported, the next output line contains a cir-
cumflex (^), used as a caret below each column at which an error was
detected. Dots (...) are used to fill in the spaces between the carets.

159

Each error that appears on a line is then precisely located and shown
in a format which can be used to quickly locate and fix the error. For
each error, the line and column number are printed first, enclosed within
square brackets ([]), then the severity of the error is indicated by one of
the keywords “Fatal”, “Error”, “Warning”, or “Remark” appearing in
parentheses. Following the severity of the error is the text of the message,
which may include references to parts of the source text, or references to
types or other data structures used to compile the program.

16.2
Example
showing
Aldor
messages

The message format described in the previous section will be illustrated
by examining the error messages produced when we attempt to com-
pile the file “error0.as” shown in Figure 16.2. The command “aldor
error0.as” produces the messages shown in Figure 16.2.
The first line of this message indicates that the message was generated
from line 4 of the file “error0.as”. The next lines specify that errors
were detected at columns 12 and 15 on this line. The carets indicate
that the first error reported on this line is due to the operator => and
that the second error reported on this line resulted from the symbol 1.
In addition, these are the second and third messages, respectively, which
were encountered during the compilation of “error0.as”.
The next message shown is actually the first detected by the compiler.
It is a “Warning” which complains of a missing “;”. There is also a
hint which suggests that piling has been used incorrectly. However, since
the declaration “#pile” was not included in the file, piling syntax (see
Section 22.3) is not being used.
Let’s add the declaration “#pile” to “error0.as” and call the updated
file “error1.as”, shown in Figure 16.2. Compiling this file produces the
messages shown in Figure 16.2. Now there is a single error message at
line 6, which complains that no meaning can be found for the operator
“f”. There is certainly no declaration for “f” in “error1.as”. This
operator should in fact be “factorial”, and not “f”. After making this
change (shown in Figure 16.2), the file will compile cleanly.
This example was compiled using the default message options as de-
scribed in Figure 16.5. The compiler’s message options determine what
kinds of messages the compiler will generate.

160 · Understanding messages

#include "aldor"

factorial(n: AldorInteger): AldorInteger ==
n <= 1 => 1
n * f(n-1)

Figure 16.1: “error0.as” — A program containing mistakes.

Figure 16.2: Error messages for “error0.as”.

#include "aldor"
#pile

factorial(n: Integer): Integer ==
n <= 1 => 1
n * f(n-1)

Figure 16.3: “error1.as” – A program containing fewer mistakes.

Figure 16.4: Error messages for “error1.as”.

#include "aldor"
#pile

factorial(n: Integer): Integer ==
n <= 1 => 1
n * factorial(n-1)

Figure 16.5: “error2.as” – A program which compiles.

16.2. Example showing Aldor messages · 161

16.3
Some
common
error
messages

This section explains some error messages likely to be seen by new users.
Compiler error messages do not always explain the real nature of the
problem. This statement is true in general, and not only for the Aldor
compiler. Compilers analyse programs on the basis of more or less rigid
syntactic rules, and they can become enormously confused by a missing
character, or misspelled word.
What follows is a collection of ‘mysterious’ messages (or, at least, mes-
sages which are puzzling to new Aldor programmers), generated by Al-
dor.

• ‘aldor.as’ cannot be opened

"myfile.as", line 1: #include "aldor.as"
^

[L1 C1] #1 (Error) Could not open file ‘aldor.as’.

"myfile.as", line 1: import from Integer;
............^

[L1 C13] #1 (Error) No meaning for identifier ‘Integer’.

This is probably a message that will occur only once — it indicates that
Aldor has not been set up properly.
• Check the ALDORROOT environment variable. For Unix users, for

example, the file “aldor.as” must be located in the directory
“$ALDORROOT/include”; for DOS users it must be located in the
directory “%ALDORROOT%\include”. (Type “set” on DOS to see
the value of this environment variable. Check the installation in-
structions to ensure that you have completed all necessary steps.)
• (For DOS users only) check “FILES=...” in your config.sys. A

minimum value of 40 is recommended.
See also Section 23.14.

• No meaning for integer-style literal ‘xxx’
• No meaning for string-style literal ‘xxx’
• No meaning for float-style literal ‘xxx.xx’

Unlike traditional programming languages, in Aldor there is no built-
in knowledge about the meaning of numeric or string constants. Every
domain can export an interpretation for these constants, with the ad-
vantage that you can define your own methods for interpreting them.
The standard Aldor library contains some standard domains exporting
interpretations for these constants, but you must explicitly import these
domains in the scope of your program. So in your program you need to
say:
import from MachineInteger; or import from Integer;

to specify if you want to use the machine representation or the infi-
nite precision representation for integer-style literals such as 2, 3, 4, ...

162 · Understanding messages

For string-style literals, such as “dog” and “cat”, you can import from
the “String” domain, and for floating point-style literals you can im-
port from “SingleFloat” (single precision hardware floating point) or
“DoubleFloat” (double precision hardware floating point). See also Sec-
tion 5.2.

• No one possible return type satisfies the context type

Aldor is a strongly typed language. This means that the type of each
expression forming the program is determined during the compilation
process. The following example shows a typical situation in which this
message occurs:

#include "aldor"

foo():Integer == 1;

b: MachineInteger == foo();

Compiling this example with the option “-M2” (full error messages),
gives:

"myfile.as", line 5: b: MachineInteger == foo();
.....................^

[L5 C22] #1 (Error) No one possible return type satisfies the context type.
These possible return types were rejected:

-- AldorInteger
The context requires an expression of type MachineInteger.

“b” is a constant whose type is “MachineInteger”, so on the right-hand
side of the definition an expression of the same type is required. When
the compiler searches for all the possible return types of the expression
“foo()”, it finds that the unique possible type, “AldorInteger” does not
satisfy “MachineInteger”1. Note that a function could be overloaded,
which is why the message says: “No one possible return type...”. To
fix this problem, “foo” can be overloaded with a new definition, or the
result of foo can be coerced to a MachineInteger as in:

b: MachineInteger == foo()::MachineInteger;

See also part II.

• No meaning for identifier ‘domain’

• If you are defining domain in the same file, are you sure that the
spelling for domain is correct? (Remember that Aldor is case-
sensitive: “Integer” and “integer” are two different identifiers!)

1The error message is in terms of AldorInteger, whereas the source code uses
Integer. This is because the aldor.as file maps the readable name Integer to the
unique identifier AldorInteger, as explained in Section 2.1.

16.3. Some common error messages · 163

• If domain is from an external library, for example “mylib”, did you
include the “#library” statement in your file? For instance:
#library MyLib "mylib"
import from MyLib;

In this case, if you get the error message in the import state-
ment and the symbol that you are importing has been defined in a
“#library” statement, then check the following rules:

1. If the library is a library created with “ar” (with suffix .al),
than you must not write the suffix. This is the case, for
“mylib” — it corresponds to the file “libmylib.al”

2. If the library is a “.ao” file, than you must use the .ao suffix
in the #library statement.

See also Section 17.2.

• Argument 1 of ‘test’ did not match any possible parameter
type

If the test is for equality, in an “if” statement, are you sure that you
are using “=” and not “==”? This can be a frequent mistake for C/C++
programmers. The message says “Argument 1 of ‘test’...” even if
there is no explicit call to the “test” operator, because in some contexts,
such as an “if” statement, the “test” operator is implicitly applied.

• ‘Syntax error’ at the beginning of a line

If you are sure about the correctness of the displayed line, look at the pre-
vious line. A macro definition using “==>” and not ending with “;” can
often cause this error. For example, compiling the following statements
from the file “myfile.as”:

#include "aldor"
-- Not using ‘#pile’.

MI==>MachineInteger

import from MI;

gives the error message:

"myfile.as", line 6: import from MI;
^

[L6 C1] #1 (Error) Syntax error.

See also chapter 22.

16.4
Common
pitfalls

This is a collection of mistakes frequently made by novice Aldor program-
mers. A subclass of this consists of common mistakes for programmers
from other languages, such as C, C++ and Fortran. It is important to

164 · Understanding messages

be able to recognise situations where such mistakes occur, so that you
can understand the compiler’s error messages.

• ‘==>’ and ‘=>’

These symbols have completely different uses in Aldor. The “==>” (long
arrow) symbol is used to define a macro (you can also use the form
“macro ...”), see chapter 13, whereas the “=>” (short arrow) symbol is
used as an early exit in a sequence, see Section 5.10.

• ‘=’ and ‘==’, ‘=’ and ‘:=’

The “=” symbol is usually used as an equality operator (but can be
overloaded by user programs). The “==” (double-equal) is used to de-
fine constants — categories, domains, functions and values are all Al-
dor constants. The double-equal symbol is sometimes referred to as the
“very-equal” symbol for obvious reasons. The “:=” operator is used for
assignments.

• Using ‘ ’ as a separator in identifiers

The “ ” (underscore) symbol is used as an escape character in Aldor
— thus the identifiers “list of integers” and “listofintegers” are
exactly the same. For this reason, to prevent ambiguities, we suggest
using capital letters, instead of “ ”, to separate words in identifiers, as
in “listOfIntegers”.

• Missing ‘;’ at the end of a macro definition

Unlike other languages, such as C, the Aldor preprocessor requires that
macro definitions end with a “;” (or a newline, if you are using “#pile”.
Unfortunately the compiler has no way of knowing that the statement
defining the macro has ended and so will usually complain about a syntax
error at the start of the next line.

• Undefined symbol INIT xxx referenced from text segment

This is a message generated by the C compiler (cc, gcc, xlc, etc.) that
Aldor is using on your platform to generate stand-alone executable files.
Everything in the compilation process of the Aldor program succeeded,
but something went wrong in the final linking step.
One common cause of this kind of problem is compilation using another
library, as well as/instead of the standard Aldor library libaldor, with-
out letting the compiler know about the other library. When you include
a “.al” library, you should add -llibname to the command line2.
See chapter 17 and, in particular, Section 17.2 to understand how to use
other libraries with Aldor. A particular point to note when compiling is:
• If you want to use a domain from “mylib” (a library containing

2Note that Aldor options, such as -l, are case-insensitive.

16.4. Common pitfalls · 165

definitions of some domains), you should include the following lines
in your Aldor program:
#library MyLib "mylib"
import from MyLib;

(Note that any identifier may be used in place of “MyLib”.) When
calling the compiler, you need to include the “-lmylib” option
among the parameters; for example:
% aldor -lmylib myprog.as

• User program with the same name as a library file
If you create a “.as” file with the same name of a library file, it won’t
compile. The compiler will issue a warning message if there is such a
name conflict. For example, there is a file in libaldor with the name
“sal int.as”; suppose that your file is also named “sal int.as”, when
your file is compiled you will get a warning, followed by one or more error
messages relating to the symbols being used in your file:

#1 (Warning) Current file over-rides existing library in
‘/usr/local/aldor/lib/libaldor.al’.

"pointer.as", line 4: foo():Integer == 1;
.................^

[L4 C18] #2 (Error) No meaning for identifier ‘1’.

The easiest way to view the names of the files in a library is usually to use
a command provided for that purpose by your operating system — for
example, the “ar” command in Unix (see Section 17.2 for an alternative):

cd $ALDORROOT/lib
ar vt libaldor.al
ar vt libfoam.al

The compiler will issue a warning message if the name of your file is used
by any library needed for compilation of the file. If you are recompiling
a library, then the warning can safely be ignored.

16.5
Controlling
compiler
messages

The types of messages returned by the Aldor compiler are controlled
using the -M option, which takes an argument identifying the kind of mes-
sage information to display. Preceding any message option with “no-”
negates that option, so -M no-details will suppress the details associ-
ated with a compiler message. A complete listing of the message options
can be found in Section 23.12.

The default
compiler message
options

The default message option used by the Aldor compiler is -M 2, which is
equivalent to the following collection of options: -M number, -M sort, -M
warnings, -M source, -M details, -M notes, -M mactext, -M abbrev
and -M human.
The option -M human indicates that the compiler messages are to be read
and interpreted by a human user, as opposed to a computer program.

166 · Understanding messages

The -M number option enumerates the order in which the compiler mes-
sages were encountered. An ordinal #n appears after the bracketed line
and column values. The default option -M sort shows the compiler mes-
sages sorted by the order in which they appear within the file. Using -M
no-sort instead causes the messages to appear in the order in which
they are encountered by the compiler, which may be different from their
order in in the program.
The -M warnings option will display the compile time warnings which
do not prevent a successful compilation. When the option is changed to
-M no-warnings then those messages, which are only advisory in nature,
are suppressed.
The compiler normally displays the source text which caused each mes-
sage. However, using -M no-source displays only the compiler message
with the line and character location without showing the source text.
Some compiler messages may have notes associated with them which
cross reference other compiler messages having a similar or identical
meaning. They are produced by the option -M notes.
Compiler messages abbreviate the data types which are contained within
the text of the message, when the option -M abbrev is used. To expand
the type names, use the option -M no-abbrev.

16.6
Interactive
error inves-
tigation

In most cases, the error messages will give enough information for the
programmer to determine what is wrong with a program. In some cases,
however, extra detail is required. Rather than print many lines of de-
bugging information for each error, the Aldor compiler gives messages
of moderate length and allows the programmer to get more information
interactively.
The -M inspect option (not to be confused with -G loop) must be given
if interactive error investigation is desired. Then, whenever the compiler
detects an error, it stops and enters a debugger or “break loop”. The
break loop gives the programmer access to information such as the types
of variables and the names in scope. An example using the interactive
loop is shown in Figure 16.6.

16.6. Interactive error investigation · 167

% aldor -Minspect error3.as
"error3.as", line 33:

b := left(b, z) -- lbi-b+zi or lbb-b+zb: ambiguous
.............^
[L33 C14] #1 (Error) There are 2 meanings for the operator ‘left’.

Meaning 1: (Boolean, Boolean) -> Boolean
Meaning 2: (Boolean, AldorInteger) -> Boolean

"error3.as", line 34: b := left(i, i) -- no meaning
..................^

[L34 C19] #2 (Error) Argument 1 of ‘left’ did not match any possible parameter type.
The rejected type is AldorInteger.
Expected type Boolean.

Aldor compiler break --
::: up
left(b, z)
::: down
left
::: next
b
::: means
1: Param b : Boolean

::: next
z
::: means
1: LexConst z : AldorInteger
2: LexConst z : Boolean

::: quit
--

Figure 16.6: Interactive Error Investigation

168 · Understanding messages

The interactive error inspector allows the following commands:

help list the commands, with descriptions
show show the current node
means show the possible meanings of the current node
use show how the current node is used
seman show the extra semantic information for the current

node
scope show information about the current scope

up use the parent as the current node
down use the 0th child as the current node
next use the next sibling as the current node
prev use the previous sibling as the current node
home return to the original node
where return the source position of the current node

getcomsg get information on the current message
notes show the notes associated with the current message
mselect i select message i to be the current message
mnext select the next message in the list
mprev select the previous message in the list
msg display the error message again
nice show with pretty printed form
ugly show with more detailed, internal form

quit exit the compiler, showing all messages so far

16.6. Interactive error investigation · 169

16.7
Selecting
error
messages

The Aldor compiler is organised in such a way that messages may be
replaced, enabled, and/or disabled from the command line. Messages
are identified by a name tag, e.g. “AXL W CantUseLibrary”. The name
tags of all messages used by the compiler may be found in the catalogue
of error messages in chapter 25.
Once the name of a particular message is identified, the command
aldor -M msgname input.as

can be used to enable the message msgname if it is otherwise disabled.
Conversely, the command
aldor -M no-msgname input.as

will disable the message msgname if it is otherwise enabled. Normally,
the messages classified as warnings are enabled, while those classified as
remarks are disabled.
The special message name “warnings” can be used to enable or disable
all warning messages, and the special name “remarks” can be used to
enable or disable all remarks. “Error” messages cannot be disabled.
In addition to selecting error messages by name, it is possible to use the
command
aldor -M emax=n

to specify the number of error messages which will be reported before
aldor gives up and stops processing the input file. The default is ten.

16.8
Error
messages
and macros

When an error occurs in the processing of program text which involves a
macro, it is sometimes useful for the error message to point to the macro
invocation, and sometimes for it to point into the body of the macro to
the location where the error was detected. The command
aldor -M mactext

instructs aldor to point to the text of the macro, while the command
aldor -M no-mactext

instructs aldor to point to the macro invocation.
There is no mechanism for instructing aldor to point to the invocation
of a macro which appears in the body of another macro.

170 · Understanding messages

16.9
Error
messages
and GNU
Emacs

GNU Emacs offers several commands for compiling and debugging pro-
grams. Among these are “M-x compile”, which can be used to compile
Aldor programs. By default, M-x compile issues the command “make”,
in a separate process, but the command may be changed to any other
Unix command, including any command line which invokes the Aldor
compiler. Output from the command goes to the buffer *compilation*.
The format of the error messages produced by the Aldor compiler is
then understood by the command “C-x ‘”, which finds the next error
message in the *compilation* buffer and displays the source line which
produced the error.

16.10
Using an
alternative
message
database

It is possible to have the Aldor compiler use an alternative message
database. This is done via the -Mdb command line option. Thus, a
command script can cause the compiler to use a database of messages
translated to some other language, or which give a different level of detail.
The messages which have been built into the compiler were derived from
the database samples/comsgdb.msg. A replacement message database
must provide messages for all the message tags in that file, and should
be in the X/Open format3.
Once a new message database file has been created, it can be placed in
any directory which is normally searched for executable programs. If
the database is called newcomsgs.cat, for example, then the compiler
argument “-Mdb=newcomsgs” will find it.

3Note that the comsgdb.msg file is not in that format

16.9. Error messages and GNU Emacs · 171

CHAPTER 17

Separate compilation

This chapter describes how to run the Aldor compiler to produce libraries
or executable programs from multiple files.

17.1
Multiple
files

Unless a program is very small, it is normal to develop it in stages and
to identify parts of it for potential re-use, compiling them separately. Al-
dor supports separate compilation to platform-independent “.ao” files.
These files contain type information, intermediate code and other in-
formation to allow type-safe separate compilation and cross-file optimi-
sation. These files have a portable format and it is possible to move
them between machines of different architectures, with different charac-
ter sets, byte orders or floating-point formats. The “.ao” files can be
thought of as platform-independent object files, which may be imported
into other Aldor programs or used to generate C or Lisp or object code
for a particular platform.
Let us give a a toy example which illustrates the steps one takes to do
separate compilation with the Aldor compiler. Suppose we have two
files: “choose.as”, containing some functions, and “poker.as”, which
uses them. These files are shown in Figure 17.1. The commands to
compile these individual files together are:

% aldor -O -Fao -Fo choose.as
% aldor -O -Fao -Fo -lChooseLib=choose.ao poker.as
% aldor -e poker -Fx -laldor poker.o choose.o

The first step compiles the file “choose.as”. The “-Fao” option causes
the compiler to create a platform-independent file, “choose.ao”, and the
“-Fo” option gives a platform-dependent object file, such as “choose.o”
on Unix, containing machine code. The “-O” option requests optimised
code.

173

--
-- choose.as: A file providing functions to be used elsewhere.
--
#include "aldor"

factorial(n: Integer): Integer ==
if n <= 2 then n else n * factorial(n-1);

choose(n: Integer, k: Integer): Integer ==
factorial(n) quo (factorial(k) * factorial(n-k));

--
-- poker.as: A main program using functions from "choose.as".
--
#include "aldor"
#include "aldorio"

import from ChooseLib;
import from Integer;

pok := choose(52, 5);
stdout << "The number of different poker hands is " << pok << newline;

Figure 17.1: A program consisting of two files.

The second step compiles the file “poker.as”, which uses “choose.as”.
The “-lChooseLib=choose.ao” option tells the compiler that the library
“choose.ao” is to be made visible within the program as a package
named “ChooseLib”. This “-l” option could be avoided by using a
#library command, as described in Section 17.3.
In the third command, the “-Fx” option directs the compiler to link an
executable image from the object files on the command line. The “-e”
option causes the resulting program to begin execution by evaluating the
top-level statements of the file “poker.as”. The “-e” option also directs
the compiler to give the executable file the name “poker” (possibly with
some system-dependent extension, such as “.exe” under DOS).

17.2
Libraries

In order to handle large numbers of separately compiled files, the Aldor
compiler allows “.ao” files to be combined into aggregate “.al” files. The
aggregate library files may be created and maintained on Unix using the
“ar” command. For the platforms for which “ar” is not available, the
Aldor distribution provides a program “uniar”.
When specifying a library to the compiler with the -lname option, name
is treated as a filename if it has a file extension or a directory specification.
Otherwise it is treated as a shorthand reference to either or both of the
libraries “libname.al” and “libname.a” in the current directory or on
$LIBPATH.

174 · Separate compilation

Examples:
• The command-line argument -lnewmath is treated as a reference to

the library libnewmath.al in the current directory or on $LIBPATH.
• The command-line argument -lmyfile.ao is treated as a reference

to the file myfile.ao in the current directory or on $LIBPATH.
• The command-line argument -lstuff/myfile.ao is treated as a

relative pathname reference to the file myfile.ao in the directory
stuff.
• The command-line argument -l/u/joe/myfile.ao is treated as an

absolute pathname reference to the file myfile.ao in the directory
/u/joe.

When the Aldor compiler is asked to create an executable file, references
to libraries via -l will be passed to the linker, if appropriate. This can be
convenient on certain platforms. For example, on Unix, it allows one to
have “libxxx.al” and “libxxx.a” containing the platform-independent
“.ao” files and the platform-dependent “.o” files, respectively.

17.3
Source code
references
to libraries

A separately compiled module can be referenced directly from the source
text of a program much the same way that it is referenced from the
command line. In a source program, the system command #library
plays the same rôle as -l does from the command-line. The treatment of
names in the #library system command is exactly the same as in the -l
command-line argument (see Section 23.5. When using the #library sys-
tem command, however, remember to put the name in quotation marks.
References to files using #library will be passed to the linker under the
same circumstances as the corresponding -l command-line argument.

17.4
Importing
from
compiled
libraries

Compiled object files (.ao) and compiled libraries (.al) have the same
top-level semantics as Aldor domains: before the symbols defined in a
separately compiled file are visible during the compilation of a given
source file, the symbols must be imported into the current scope. Before
a domain can be imported, it must be given a name. The same is true
of compiler object files: before symbols can be imported from an object
file or a library, it must be given a name.
Names are assigned to compiler libraries using an extension of the -l
syntax and an extension of the #library syntax described in the previous
two sections. If the argument to either of these forms is prefixed by a
symbol (which should not be enclosed in quotation marks), then the
compiler object or library which follows is taken as the definition of a
domain whose name is the given symbol. The symbols exported from the
newly named domain are exactly those exported from the source code
used to produce the compiled object.

17.3. Source code references to libraries · 175

Consider the following Aldor source file:

#library String "/tmp/mystring.ao"
import from String;

...

The first two lines specify that the domain String, usually provided by
the compiler libraries found in the distribution, will, for the extent of the
file, be provided by the compiled object file “/tmp/mystring.ao”. The
#library command specifies a binding for the symbol String, and then
the import command operates as it does in any other context, extracting
the exported symbols from the domain String and making them visible
in the current scope. Note that, unlike the command line usage, the
“#library” command requires a space, rather than “=”, between the
domain and library names.

176 · Separate compilation

CHAPTER 18

Using Aldor interactively

This chapter describes how to use a built-in interpreter to run Aldor
programs interactively. We shall assume that the reader is familiar with
at least the basic concepts of the Aldor programming language.

18.1
How to use
the
interpreter

The interpreter is built into the Aldor compiler. It is used in two different
contexts:

• running Aldor programs without compiling them to executable
files,
• writing Aldor programs in interactive mode.

18.1.1
Running
programs
with the
interpreter (-g
interp)

Suppose you write an Aldor program “foo.as”. One way to get it run-
ning is with the command:
% aldor -g run foo.as

When you call the compiler with this option, it compiles the program
into a device-independent intermediate format called Foam (stored, in
this case, in the file “foo.ao”), which is then translated into C code
(“foo.c”) and compiled with the C compiler available on your platform.
Finally, the executable code generated by the C compiler is executed1.
If you call the compiler with the “-g interp” option, e.g,
% aldor -g interp foo.as

the intermediate file “foo.ao” is executed without any call to the C
compiler. Since the instructions are interpreted, and not pure machine

1Note that using only the option “-g run” causes all the intermediate files to be
removed, once the program is terminated. If you want to keep them, then you should
use, for example, “-Fao -Fx”. See chapter 23 or use the “-hf” option to get help.

177

code instructions as when using “-g run”, execution will generally be
slower than in the first case. Despite the low execution speed, there are
reasons to use the interpreter instead of the compiler:

• as the generation and the compilation of C code is unnecessary,
you can get faster responses using the interpreter if the program is
not computationally time-expensive;
• on some platforms, such as Intel 80x86 with Windows, there is no

C compiler included with the operating system; in the absence of
any C compiler, the interpreter is the only way of running an Aldor
program.

Using the interpreter is suggested especially for those who are learning
Aldor, as it provides a quick way of testing small programs. Note that all
the compiler options can be used with “-g interp”. All optimisations
except “-Qcc” are still effective, because all optimisations in Aldor are
performed on the intermediate code. So, for example, if the compiler is
called using the “-Q3” option, as in:
% aldor -Q3 -g interp foo.as

the program will generally run faster than without the “-Q3” option.
Note that the semantics of the language are fully preserved by the inter-
preter. The interpreter provides all of the Aldor language features.

18.1.2
Interactive
mode
(-g loop)

The interactive mode provides an interactive environment in which it
is possible to define functions and domains, to use operations provided by
the library, to evaluate expressions and to use other features. Users who
are familiar with programming in languages that are usually interpreted,
such as Lisp, already know the feeling of an interactive environment and
how it can be used to gain confidence in the language, and to develop
and debug more complex programs.
The command line to start the compiler in interactive mode is:
% aldor -g loop

A prompt will appear:

%1 >> _

At this point, you start typing the first line of your program, for example:

%1 >> #include "aldor"

After a few milliseconds the prompt appears again (the delay is due to
the interpreter loading the base library):

178 · Using Aldor interactively

%1 >> #include "aldor"
%2 >> _

A nicer output for types and values is available by include “aldorinterp.as”:

%2 >> #include "aldorinterp"

The number that appears immediately after % is a serial number which
is incremented with each input line from the user. As will be seen, this
is useful when the history mode is on. Now type:

%3 >> import from MachineInteger
%4 >> 1 + 1

At this point the expression 1 + 1 will be evaluated and the answer is:
2 @ MachineInteger

in which 2 is the result of the expression and @ MachineInteger means
that its type is MachineInteger. To quit the interactive mode type:

%5 >> #quit

When the interpreter starts, it looks in the current directory (the direc-
tory from which the command line is being entered) for an initialisation
file. An initialisation file is any Aldor program named aldorinit.as. If
this file is present in the current directory, it will be loaded and executed
before the prompt appears.
An example initialisation file could be:

#include "aldor"
#include "aldorinterp"

-- Commonly used macros
MI ==> MachineInteger
I ==> Integer

Note: the interpreter will display a message: Reading aldorinit.as...
if an initialisation file is read.
The majority of command line options are still active when “-g loop”
is used. For example, the optimisation option:
% aldor -Q3 -g loop

will invoke the optimiser before interpreting the generated Foam inter-
mediate code, thereby affecting the execution speed.
We will now try a simple interactive session. Note that all the lines which
do not start with the prompt have not been typed, but are part of the
output.

18.1. How to use the interpreter · 179

%1 >> -- Example of interactive session --
%2 >> ------------------------------------
%3 >> -- Start by loading definitions
%4 >> #include "aldor"
%5 >> #include "aldorinterp"
%6 >> import from Integer
%7 >> 100
100 @ AldorInteger
%8 >> 100 + 100
200 @ AldorInteger
%9 >> f(x:Integer):Integer == if x=0 then 1 else x*f(x-1)
Defined f @ (x: AldorInteger) -> AldorInteger
%10 >> f 4
24 @ AldorInteger
%11 >> import from List Integer
%12 >> reverse

() @ List(AldorInteger) -> List(AldorInteger)
%13 >> reverse [1,2,3,4,5]
[5,4,3,2,1] @ List(AldorInteger)

18.2
Directives
for the
interactive
mode

This section provides a full description of some language directives avail-
able only in interactive mode2.
The options available specifically for interactive mode are requested using
“#int”. A brief help message displaying all available options may be
obtained with:
#int help

The options are as follows:
• help
• verbose
• history
• confirm
• timing
• msg-limit
• gc
• options
• cd
• shell

These are described in detail below.

• #int verbose [on | off]

Default is: on.
2The directives available in interactive mode will be ignored if they are encountered

during normal compilation.

180 · Using Aldor interactively

When verbose is on, the interpreter prints, if possible, the value and the
type of the current expression.
Example:

%4 >> 4
4 @ MachineInteger
%5 >> 5 + 5
10 @ MachineInteger
%6 >> foo(x : String) : Boolean == empty? x
Defined foo @ (x: String) -> Boolean

If the value of the expression is not printable (that is, its domain does
not export <<:(%, TextWriter) -> TextWriter) or if it has no value
at all (for instance, in “import from” statements), nothing is displayed.

• #int history [on | off]

Default is: off.
When history is on, the interpreter wraps, if possible, an assignment
around the current expression. If, for example, “%5” is the current inter-
pretation step, the prompt will change from
“%5 >>”
to
“%5 :=”
which means that, if the current expression has a value, this is assigned
to a new variable named “%5”. The variable “%5” is implicitly declared
and its type is inferred from the type of the right hand side.
Example:

%4 >> #int history on -- history is on
%5 := MI ==> MachineInteger -- no value is assigned to %5
%6 := import from MI -- no value is assigned to %6
%7 := 5 + 5 -- 10 is assigned to %7
10 @ MachineInteger
%8 := 10 + %7 -- you can use %7
20 @ MachineInteger
%9 := %7 := %7 - 5 -- 5 is assigned to %7 and %9

Notes:
1. At interpretation step 9, the right association rule for the := oper-

ator in Aldor is observed.
2. At steps 5 and 6, since no value is assigned to %5 or %6, the variable

names %5 and %6 are not introduced and trying to use them would
generate an error message.

• #int confirm [on | off]

18.2. Directives for the interactive mode · 181

Default is: on.
When confirm is on, the interpreter asks for confirmation before exe-
cuting some operations that are illegal in the compiled Aldor language.
Typical cases are the redefinition of constants and functions: according
to the language definition, these cannot be redefined — but it may be
useful to relax this rule in interactive mode.
Suppose, for example, that you write a definition for a function “foo”,
later adding other functions using “foo”; at some point you want to
provide a better implementation for “foo”: if your program is going to
be compiled, then you can simply edit the file where “foo” is defined
and change it but, unfortunately, this cannot be done if you wrote “foo”
interactively. This is why, in interactive mode, you can enter a new defi-
nition for “foo”: a message will appear because you are doing something
that is not normally allowed in Aldor and, at this point, you can confirm
that you want to replace the old definition with the new one. If you do
not want the message asking for a confirmation, you can enter:
“#int confirm off”
in which case a positive answer is assumed for each situation in which a
confirmation would be needed.
Example:

%3 >> Int ==> Integer
%4 >> import from Int
%5 >> foo(x : Int) : Int == x
Defined foo @ (x: AldorInteger) -> AldorInteger
%6 >> foo(x : Boolean) : Boolean == not x -- (see Note 1)
Defined foo @ (x: Boolean) -> Boolean
%7 >> foo(x : Int) : Int == x * x
Redefine ? (y/n): y -- (see Note 2)
foo redefined.
Defined foo @ (x: AldorInteger) -> AldorInteger
%8 >> foo 2
4 @ AldorInteger

Notes:
1. In Aldor operators can be overloaded, so the definition at step “%6”

is legal and does not need confirmation. A function is redefined only
if a new definition with exactly the same signature is provided.

2. Answering n causes the previous definition to be kept.
It is useful to set this option off when, for some reason, a file is included
a second time3. If this file contains some function definitions, you will
not then be prompted to confirm each of them.

• #int timing [on | off]

3Remember to use “#reinclude” to include a file that has already been included.

182 · Using Aldor interactively

Default is: on.
Displays a line after each operation detailing the time taken in the com-
piler and the interpreter. For example:

%28 >> count := 0; for i in 1..1000 repeat count:=count+1
Comp: 0 msec, Interp: 10 msec

To save space this option has been turned off in the examples given here.

• #int msg-limit number
Default is: 0 (no limit).
Set the maximum length, in characters, of Aldor messages. This is useful
because some of them, such as error messages, could consist of several
lines. A value of 0 means that there is no limit. The characters “...”
at the end of the message will warn you that it has been truncated.
Note that, if you limit the message length, then you will get incomplete
messages when you use the interactive mode as a browser (see section
18.3.5). You may also see long type-names cut off with “...” in error
messages. To see the types in full, use

#int options -M no-abbrev

• #int gc

This command explicitly calls the garbage collector. After the execution,
a message showing the amount of memory not released is shown, with
additional details if the verbose option is on. This operation may take
several seconds if the hardware is slow. Note that the garbage collection
may occur as needed at other times, even though you have not specifically
requested it.

• #int options command-line options
Set one or more of the options normally available when the compiler is
called — for example, optimisations.
Example:
#int options -Q3

sets the optimisations on. Note that, since the interactive mode will
be slower for simple expressions if all the optimisations are active but
the functions defined are considerably faster, you might want to turn
optimisations such as “-Q3” on before defining time-intensive functions
and to turn them off or reset them to a lower level (such as “-Q1” or
“-Q0”) after the definition.

• #int cd new-directory
Change the current directory. This is useful if, for example, you want

18.2. Directives for the interactive mode · 183

to include files from another directory without typing the path in the
“#include” directive.
Example: #int cd /tmp

• #int shell "shell-command"
Execute the quoted string as a shell command. This is useful, for exam-
ple, to start an editor session without exiting the interpreter.
Example: #int shell "vi"

will start the vi editor under Unix.
You can also start a child shell by passing the command which invokes
it as a command. Under Unix, for example, you can say:
#int shell "csh"

to start a csh shell. To return to the interpreter, type exit.

18.3
Using the interactive mode

18.3.1
Multi-line
input

In order to provide as comfortable an interactive mode as possible, the
syntax of the Aldor language, as used interactively, differs slightly from
that of the compiled language.
Interactive mode is, by default, indentation sensitive. As a consequence,
you do not need a semicolon (“;”) at the end of each statement — the
newline is identified as a separator. This is different from non-interactive
use, where you need to use #pile to get indentation sensitivity.
Multi-line input can be performed using braces or with a “==” as the last
symbol on a line.
If you begin a definition with the line
...

%4 >> foo(x: Integer): Integer == {

then the definition will be considered complete when the number of clos-
ing braces (“}”) matches the number of opening braces (“{”) that you
entered. In this case, you must remember that braces always turn off
indentation sensitivity so you must use a semicolon (“;”) to separate
your statements.
If you enter
...

%4 >> foo(x: Integer): Integer ==

184 · Using Aldor interactively

Aldor interactive mode is smart enough to understand that you are going
to write the body of the function, so the line is not analysed as a complete
statement. In this case you need to use spaces or tabs to write your
definition with appropriate indentation. The definition will be complete
when you start writing at indentation level 0 again. A quick way to
terminate the definition of a function when in indentation sensitive mode
is to type “--” (an empty comment) at the beginning of the line.
We can show some examples. In the first one, a function “arrToList”
is defined using the indentation sensitive mode. Note that “==” is last
symbol at the end of line 8.
...

%5 >> import from Integer, Array Integer, List Integer
%6 >> -- no ‘;’ needed at the end of the line.
%7 >> -- Defining a function using the indentation:
%8 >> arrToList(ar: Array Integer): List Integer ==

-- the definition is not processed yet and the prompt does
-- not appear, indicating that you can enter the body of
-- the function.

local ls : List Integer := empty -- no ‘;’
for x in ar repeat ls := cons(x,ls)
ls -- return value

-- This comment at level 0 cause the definition to be processed.
Defined arrToList @ (ar: Array(AldorInteger)) -> List(AldorInteger)
%9 >> -- Here the prompt appears again.
%10 >> a : Array Integer := [1,2,3]
[1,2,3] @ Array(AldorInteger)
%11 >> arrToList a
[3,2,1] @ List(AldorInteger)

In the second example the same function is defined using braces to get
multi-line input:
...

%8 >> arrToList(ar: Array Integer): List Integer == {
... -- Indentation is not necessary, but we suggest using it
... -- anyway to get a more readable code. Until the definition
... -- is complete, you need ‘;’ at the end of each line.
... -- (except when you write comments, of course).
...
... local ls : List Integer := empty;
... for x in ar repeat ls := cons(x,ls);
... ls -- only here, ‘;’ is not necessary, following
... -- the language rules.
...
...-- Note that it is essential to match the opening
...-- brace to terminate the function definition -
...-- writing an unindented line does not suffice:
...}
Defined arrToList @ (ar: Array(AldorInteger)) -> List(AldorInteger)
%9 >> -- the prompt appears again.

In this case the interpreter begins each newline with three dots to indicate
that it is in the middle of a definition. Note that, since the definition is

18.3. Using the interactive mode · 185

processed only when complete, all the errors will be issued at that point.
So, for example, if you forget a terminator in the body of the function in
the second example, you will get a syntax error only when you type “}”.
This is true when using either braces or indentation.
Note: With interactive input it is often convenient to cut and paste to
and from a file (for example under X11 and Emacs). If you are going to
compile the file and you want to use fragments of code from the interac-
tive mode, you must either insert “#pile” at the top of your file or use
braces when you (interactively) define multi-line functions.
When you are using the indentation sensitive mode, the interpreter will
start to process the code when you add a line with indentation level 0,
unless this line starts another definition. This makes cutting and pasting
of code easier. For example:

...
%4 >>
arrToList(ar: Array Integer): List Integer ==

local ls : List Integer := empty -- no ‘;’
for x in ar repeat ls := cons(x,ls)
ls -- return value

arrToList(ar: Array MachineInteger): List MachineInteger ==

local ls : List MachineInteger := empty -- no ‘;’
for x in ar repeat ls := cons(x,ls)
ls -- return value

--
@
with

== add ()

%5 >>

The previous example also demonstrates that: (1) you can type <Enter>
before defining the function (as in the first line), so that the indentation
is much nicer; (2) the interactive mode is currently unable to print a list
of multiple definitions, so you get a strange message when you close the
double definition.
Note: when the construct “with {...} = add {...}” is typed on mul-
tiple lines, the braces must be placed as in:

} == add {

and not as in:
}
== add {

as this will cause a syntax error.

186 · Using Aldor interactively

18.3.2
Initialisation
file

As explained above, when Aldor starts in interactive mode, it looks in
the current directory for a file called aldorinit.as. If this file is found,
it will be read before the prompt appears. Note that this only happens
when Aldor starts in interactive mode (“-g loop”), and not for the other
modes, such as “-g run” and “-g interp”.
The most common use of the initialisation file is to define macros in order
to abbreviate the names of commonly used domains; another use would
be to set interactive options (such as #int history on) that are off by
default. An example initialisation file was given earlier.
There is also an alternative method to initialise the interactive environ-
ment that, under certain circumstances, is more convenient. You may
set the shell environment variable “INCPATH” to point to a directory
containing an Aldor initialisation file. Suppose that you call this file
“mylib.as”; then, when you start Aldor with “-g loop” you may type:

%1 >> #include "mylib"

It is usually convenient to add the line:

#include "aldor"

in the file “mylib.as”, so that you need to include only this file when you
start the interactive mode. Therefore you can initialise the interactive
environment by using a file “aldorinit.as” in your current directory
(that will be loaded automatically when you start) or by using a file
in the include path that must be explicitly included when you start (or
both).
Two observations:

1. You do not need to type the “.as” suffix when you include a file.
2. You do not need to type the directory part of the name when

including a file in the include path. Otherwise you do need to
specify its directory.

Here is another example of an initialisation file:

#include "aldor"
#include "aldorinterp"
MI==>MachineInteger;
#int verbose off
#int history on
out(x) ==> stdout << x;

18.3.3
Macros

There are no restrictions for macros. They can be defined and used at
top level, as in:

18.3. Using the interactive mode · 187

%1 >> MI ==> MachineInteger
%2 >> import from MI

We recommend defining a set of macros to abbreviate long domain names.
These macros, which can be placed, for example, in the initialisation file
(see above), can reduce the number of typing errors.

18.3.4
Running
inside an
editor

If you use editors such as Emacs, we suggest running the interactive
mode in an editor inferior shell. This will allow cutting and pasting of
definitions into your text and maintaining a history of what was typed,
so that in the event of a crash occurring during the interactive mode
session you do not lose what you typed.

18.3.5
Using the
interactive
mode as a
browser

The interactive mode also may be used for finding the exports from
domains and categories. Suppose that you want to use the Integer
domain. If you want to know its exports, simply type:

%3 >> Integer

You will get:

@ Join(
PrimitiveType with

coerce: BInt -> %
coerce: % -> BInt

== add ()
,
IntegerType with export to IntegerSegment(%)

== add ()
)

Comp: 20 msec, Interp: 0 msec

which is the type of Integer. Now type:

%4 >> IntegerType

to get:

@ Category == Join(OrderedArithmeticType, BooleanArithmeticType, HashType, InputType, OutputType, SerializableType) with
bit?: (%, MachineInteger) -> Boolean
clear: (%, MachineInteger) -> %
set: (%, MachineInteger) -> %
coerce: MachineInteger -> %
machine: % -> MachineInteger
divide: (%, %) -> (%, %)
mod: (%, MachineInteger) -> MachineInteger
mod: (%, %) -> %
quo: (%, %) -> %

188 · Using Aldor interactively

rem: (%, %) -> %
even?: % -> Boolean
odd?: % -> Boolean
factorial: % -> %
gcd: (%, %) -> %
lcm: (%, %) -> %
integer: Literal -> %
length: % -> MachineInteger
next: % -> %
prev: % -> %
nthRoot: (%, %) -> (Boolean, %)
random: () -> %
random: MachineInteger -> %
shift: (%, MachineInteger) -> %
shift!: (%, MachineInteger) -> %
default

commutative?: Boolean == true
lcm(a: %, b: %): % == ..
next(a: %): % == ..
prev(a: %): % == ..
set(a: %, n: MachineInteger): % == ..
clear(a: %, n: MachineInteger): % == ..
hash(a: %): MachineInteger == ..
odd?(a: %): Boolean == ..
shift!(a: %, n: MachineInteger): % == ..
((a: %) mod (n: MachineInteger)): MachineInteger == ..
even?(a: %): Boolean == ..
factorial(n: %): % == ..
((a: %) mod (b: %)): % == ..

and so on.

18.3.6
Loading an
Aldor file

If you have an Aldor file, you can load it into the interactive environment,
so that, for example, you can interactively call and test defined programs.
There are two ways to do this:

1. You can use the #include "myfile" directive. For example, when
you start, instead of typing:
#include "aldor"

you could type:
#include "myfile.as"

(your file should then contain the #include "aldor" directive).
2. If your operating system allows input redirection, you can use this

to read a file. For example, in Unix or DOS, you could type:
% aldor -g loop < myfile.as
(Note that myfile.as must respect the braces conventions for the
interactive mode, as explained before.)

18.3. Using the interactive mode · 189

18.3.7
The # symbol.

In Aldor the “#” symbol is a legal operator: some domains (such as
Array) export operations named “#”. The problem is that “#” is also
used to identify a preprocessor directive, such as “#include” or “#int”.
This can generate confusion. Suppose, for example, that you type:

%1 >> #include "aldor"
%2 >> #include "aldorinterp"
%3 >> import from List MachineInteger, MachineInteger
%4 >> -- create a list of 5 elements
%5 >> l := [1,2,3,4,5]
[1,2,3,4,5] @ List(MachineInteger)
%6 >> #l -- print the number of elements of ‘a’

at this point you will get the message:

[L5 C1] #1 (Warning) Unknown system command.

because the preprocessor is trying to interpret “#a” as a directive. To
ensure the correct behaviour, you can simply add a space before “#” when
it is not intended as a preprocessor directive, since a line containing a
preprocessor directive must start with the “#” (note that the prompt is
not considered by the preprocessor). In our case, a space will be the first
character of the line. So, if you type:

%7 >> #l -- with ‘ ’ before ‘#’, you get...
5 @ MachineInteger

that is, the correct answer.

18.3.8
Labels

Labels cannot be defined at top level. An input of the following kind is
not allowed in interactive mode:

%1 >> @lab1
...
%n >> goto @lab1

Note: Actually, the interactive environment does not check if the user
is trying to jump to a label defined at the top level, so you generally get
a segmentation fault if you try to do this. Labels can be used within
function definitions.

190 · Using Aldor interactively

CHAPTER 19

Using Aldor with C

Functions and data structures may be shared between programs written
in Aldor and other languages. Here we give simple examples of sharing
functions in a mixed Aldor and C programming environment.
Aldor has types corresponding to the primitive C types. These will be
described in Section 19.3.

19.1
Using C
code from
Aldor

For the first example, we show how to call a C function from Aldor. The
Aldor file “arigato.as” refers to the function “nputs,” supplied by the
C file “nputs.c”. Figure 19 shows these files.
The commands to compile these two files and link them together, say on
Unix, are:

% cc -c nputs.c
% aldor -Fx -laldor arigato.as nputs.o
% ./arigato

Arigato gozaimasu!
Arigato gozaimasu!
Arigato gozaimasu!

The first command produces the object file “nputs.o”. The second com-
mand compiles the file “arigato.as” and links it with our other file to
form an executable program. Finally, the third command runs the re-
sulting program.
The Aldor compiler can make use of C-generated object files, whether
they are kept loose or packaged with others in a library archive. The Al-
dor file using the code or data from C must declare it with the statement
“import ... from Foreign C”: this is the purpose of this statement
in “arigato.as”. When a function is imported from C, a declaration is

191

--
-- arigato.as: A main Axiomxl program calling the C function ‘nputs’.
--
#include "aldor"

MI ==> MachineInteger;

import { nputs: (MI, String) -> MI } from Foreign C;
import from MI, String;

nputs(3, "Arigato gozaimasu!");

/*
* nputs.c: A simple C function.
*/
void
nputs(int n, char *s)
{

int i;
for (i = 0; i < n; i++) puts(s);

}

Figure 19.1: Aldor code using a C function.

/*
* cside.c: A main C program calling the A# function ‘lcm’.
*/
#include "foam_c.h"

extern FiSInt lcm (FiSInt, FiSInt);

int
main()
{

printf("The lcm of 6 and 4 is %d\n", lcm(6,4));
return 0;

}

--
-- aside.as: An Aldor function made available to C.
--
#include "aldor"

MI ==> MachineInteger;

export { lcm: (MI, MI) -> MI } to Foreign C;

lcm(n: MI, m: MI): MI == (n quo gcd(n,m)) * m;

Figure 19.2: C code using an Aldor function.

192 · Using Aldor with C

placed at the head of the generated C file. This declaration is constructed
using the data correspondence below.
To call a C function or macro (such as fputc) defined in a header file
(such as “<stdio.h>” or “myfile.h”) an import of the following form
should be used:

import { fputc: (MachineInteger, OutFile) -> MachineInteger }
from Foreign C "<stdio.h>";

import { myfun: MachineInteger -> () }
from Foreign C "myfile.h";

The filename indicates the file to include when generating C. No declara-
tion for fputc or myfun is produced in the generated C — it is assumed
that all the imports are declared (or, in the case of macros, defined).
A “#include” line is produced in the generated C for every foreign header
file mentioned in the source code, even when no imported function is used.
One use of this would be to allow some of the definitions in “foam c.h”
to be over-ridden. For example, one could replace the memory man-
agement primitives with operations specifically optimised for the current
application1.

19.2
Using
Aldor code
from C

For the second example, we show how to call an Aldor function from C.
C code which uses Aldor functions should include the file “foam c.h”.
This file contains the C type definitions which correspond to the various
Aldor primitive types. For example, “FiSInt” is a typedef for the C
type corresponding to “MachineInteger”. On Unix, the full path name
for this file is “$ALDORROOT/include/foam c.h”.
For this example, the C file “cside.c” refers to the function “lcm,”
supplied by the Aldor file “aside.as”. These files are shown in figure
19.
The commands to compile, link, and run these files are:

% aldor -Fo aside.as
% cc -I$ALDORROOT/include -c cside.c
% cc cside.o aside.o -o lcm64 -L$ALDORROOT/lib -laldor -lfoam -lm
% ./lcm64

The lcm of 6 and 4 is 12

The first command compiles the Aldor code in the normal way to produce
an object file. On Unix, this produces the object file “aside.o”.

1This is only useful in very unusual circumstances.

19.2. Using Aldor code from C · 193

Compiling the C code which uses “aside.o” requires the use of a “-I”
option to tell the compiler where to find “foam c.h”.
Additional options are needed to link an executable program: a “-L”
option tells the C compiler where to look for libraries, and the “-l”
options list the libraries which provide Aldor support functions.
The “-laldor” option provides a library with basic Aldor types such as
floating point numbers, lists, file I/O, and so on.
The “-lfoam” option provides a library with run-time support for such
things as memory management and big integer arithmetic. Applications
can supply their own run time support library instead, if desired (this
involves providing alternative macro definitions to those in “foam c.h”
and a C file with whatever code is needed by the macros).
The “-lm” option makes the standard C math library available. Because
of the way Aldor compiles domains, this generally needs to be included
even if no operations from the math library are used.
In “aside.as”, the line beginning “export to” tells the compiler that a
wrapper function called lcm should be generated for the Aldor function
with the same name. This wrapper will convert the C calling convention
into that used by Aldor using the rules in the next section. Currently it
is possible to export only functions in this way (an Aldor constant can
be wrapped in a function, and types have no particular use in C).

19.3
Data corre-
spondence

This section describes the correspondence between the way data values
are represented in Aldor and the way they are represented in C. It should
be possible from this to understand which Aldor declaration will corre-
spond to a declaration in C, and vice versa.
Aldor’s abstract machine defines a number of types which correspond
to types on the target machine (in this case C on top of some operating
system). The “Machine” package, described in Section 14.16 on page 148,
exports the types provided by the abstract machine. All Aldor values are
represented internally as elements of one of these types. The complete
listing and definition of the types is given in the FOAM reference guide.
Because many Aldor domains can be parameterized over different types,
Aldor uses a pointer-sized object when passing domains. Thus, double
precision floating point numbers (which are typically bigger than point-
ers) are “boxed”, and a pointer to the box is passed, rather that the
number itself. Types which are the same size or smaller than pointer-
size are cast to the pointer type when used in a generic context and cast
back as appropriate.
In order to make the underlying types available, Aldor provides the
“Machine” package, which exports these types and operations on them.
For example, the underlying representation type of DoubleFloat is

194 · Using Aldor with C

DFlo$Machine2. This type should be used when calling foreign functions,
and the result coerced back to appropriate generic type at the Aldor level.
Records in Aldor are represented by an aggregate type of some kind in
the hosting language. For example, in Scheme a vector is used (and all
objects are the same size anyway). In C, structures are used. When
calling C-defined functions that use records it is important to ensure
that the elements of the Aldor record correspond to elements in the C
structure. This implies that records intended for use in Foreign functions
should use the underlying types, rather than the user-level types3.
The Aldor types correspond to C types which are given as typedefs in
the file “$ALDORROOT/include/foam c.h”. The following table shows
the correspondance between the types exported from the Aldor package
“Machine” and C:
Aldor type C typedef Usual C type

Nil$Machine FiNil Ptr
Word$Machine FiWord int
Arb$Machine FiArb long int
Ptr$Machine FiPtr Ptr
Bool$Machine FiBool char
Byte$Machine FiByte char
HInt$Machine FiHInt short
SInt$Machine FiSInt long
Char$Machine FiChar char
Arr$Machine FiArr Ptr
Rec$Machine FiRec Ptr
BInt$Machine FiBInt Ptr
SFlo$Machine FiSFlo float
DFlo$Machine FiDFlo double
A -> B FiClos struct _FiClos *

Here “Ptr” is defined as the type “char *” for compatibility with old C
dialects, but could equally well be defined as “void *”.
All other Aldor types defined by the system (e.g. in the libaldor li-
brary) or by a user correspond to the C typedef “FiWord”. This includes
Integer, MachineInteger and so on. The data correspondence on most
32 bit machines allows one to treat MachineInteger and SInt$Machine
as the same type (which is the reason that “arigato”, above, works).
However, on other machines, for example 16 or 64 bit machines, the two
types are not equivalent.
Values belonging to “"”Record” types, are pointers to C structs of the
corresponding members. For example, the C declaration

2or equivalently BDFlo, which is a macro defined in “aldor.as”
3A brief perusal of the file “$ALDORROOT/samples/lib/libaldorX11” provides a

rather extended example of this.

19.3. Data correspondence · 195

struct {
int x;
short y;
double z;

} *r;

corresponds to the the Aldor declaration

local r: Record(
x: SInt$Machine, -- or x: MachineInteger
y: HInt$Machine,
z: DFlo$Machine

);

Functions which return no value, or more than one value, are declared
to be of type void, and additional return results are returned through
pointers passed in as additional arguments.
Thus, the expression:

import {
foo: (Integer, Integer) -> (SInt$Machine, BInt$Machine)

} from Foreign C;

implies that foo should be declared (in ANSI C) as:

static void foo(FiWord, FiWord, FiSInt *, FiBInt *);

A number of examples of exporting and importing C-defined functions
can be found in “$ALDORROOT/samples/test”.

196 · Using Aldor with C

CHAPTER 20

Using Aldor with Fortran-77

20.1
Basics

This section describes how to call subprograms written in Fortran-77
from Aldor, and how to call routines written in Aldor from Fortran-77.
Since there is no standard foreign-language interface to Fortran-77 it
may be necessary to customise your implementation of Aldor to work
with your local Fortran compiler. As is the case with Aldor programs
which import other foreign code, programs which use Fortran cannot be
run in the interpreter environment.
The current interface supports all of the data types in Fortran-77, and
allows Fortran and Aldor functions to be used interchangeably in many
contexts. For example a Fortran function can be treated as an Aldor
function transparently, and an Aldor routine may behave like a Fortran
Function or Subroutine. The only major restriction is that an Aldor
program cannot see a Fortran Common block, and a Fortran program
has no way of accessing Aldor global variables.
Note that this mechanism uses the C generation facilities described in
chapter 19 and does not provide a mechanism for generating native For-
tran code. It is principally intended as a means by which an Aldor
programmer can make use of the vast body of Fortran code available,
and by which a Fortran programmer may embed Aldor code in his or her
application.

197

20.2
Simple
Example

This simple example demonstrates the main concepts you need to know
to call Fortran from Aldor. It shows the use of a Fortran routine for
sorting all or part of a vector of floating-point numbers.

1 #include "aldor"
2
3 MINT ==> MachineInteger;
4
5 import {
6 fsort: (Array(DoubleFloat),MINT,MINT,Ref(MINT)) -> ();
7 } from Foreign Fortran;
8
9 import {random : () -> Integer} from RandomNumberSource;

10 import from DoubleFloat;
11
12 -- Set up data
13 error?: MINT := 0;
14 n : MINT := 10;
15 v : Array(DoubleFloat) := new(10);
16 for i in 1..n repeat
17 set!(v,i,random()::DoubleFloat/random()::DoubleFloat);
18
19 fsort(v, 1, n, ref error?);
20
21 if zero? error? then {
22 print << "sorted data: " << newline;
23 for i in 1..n repeat print << v.(i::MINT) << newline;
24 }
25

line 6–8 Here we import the function from Foreign(Fortran). We
will describe the exact correspondence between Aldor and Fortran
types later, but for the moment remark that objects whose value
will be changed on exit are passed using the Ref constructor.

line 20 The Fortran routine is called as if it were an Aldor one. The
operator ref is used to pass a reference to the error flag (this is
described in more detail below). Notice that it is possible to pass
numerical data directly (the second argument, which in this case
represents the start point of the segment of the vector to be sorted)
as well as via a variable.

line 24 Note that the contents of the array have been changed by the
Fortran routine.

The program could be compiled as follows, assuming that the fsort
routine is contained in a library called sort.
% aldor -Cfortran -Fx -laldor -Clib=sort f77sort.as

Note the use of the “-Cfortran” flag. This has the effect of causing
the linker to link to the appropriate Fortran runtime routines, and may
also cause compiler-specific initialisation code to be generated. It is not
necessary to use this flag except at the link stage.

198 · Using Aldor with Fortran-77

20.3
Data Corre-
spondence

Fortran-77 has a fixed and relatively small set of data types, and passes
all subprogram parameters by reference (i.e. it passes a pointer to the
data rather than a copy of the data). Aldor, on the other hand, has a rich
and extensible type system, and in general will pass copies of subprogram
data (at least in simple cases). The aim of the interface is to ensure that
Foreign functions behave naturally in their host environment.
In practice it would be very restrictive only to be allowed to pass this
fixed list of types to Fortran, so Aldor uses a set of categories to indicate
that a domain can be used to pass particular types of values. This usually
means that the domain’s representation is the appropriate basic machine
type or a pointer to it. For example the DoubleFloat type belongs to
the FortranDouble category since its representation is a boxed double
precision floating point number. Note that none of these categories have
any exports, the complete list, and an example of an Aldor type which
belongs to each one, is:

Aldor Category Fortran Type Example Domain

FortranInteger INTEGER MachineInteger
FortranReal REAL SingleFloat
FortranDouble DOUBLE PRECISION DoubleFloat
FortranLogical LOGICAL Boolean
FortranCharacter CHARACTER Character
FortranString CHARACTER(*) String
FortranFString CHARACTER(*) FixedString
FortranComplexReal COMPLEX REAL Complex(SingleFloat)
FortranComplexDouble COMPLEX DOUBLE Complex(DoubleFloat)

Fortran strings (or rather Character arrays) are not null-terminated, so
to manipulate them it is necessary to know their length. Data from
the Aldor domain String is automatically converted to the equivalent
Fortran object, which is in principle a (length, data) pair. An alternative
is to use the FixedString type which is parameterised by its length.
By default Aldor passes a copy of a scalar parameter to Fortran, in line
with its usual semantics. Since many Fortran routines return results by
modifying their arguments there is also a Ref constructor which will in
effect copy the value of the parameter at the end of the call to the For-
tran routine back to the Aldor object (this is often referred to as “copy-
in/copy-out” semantics). The choice of whether to declare an argument
to a Fortran routine to be e.g. a DoubleFloat or a Ref(DoubleFloat)
is left up to the user, and will depend on whether he or she wishes to
inspect its value after the call to Fortran has been completed. Note that
it is perfectly safe to declare an argument as e.g. DoubleFloat even if
it will be modified by Fortran, although of course the modified value
will not be visible in Aldor. The Ref domain exports two operations to
dereference and update instances of itself.

20.3. Data Correspondence · 199

20.3.1
Array
Arguments

The normal layout of data in an Aldor array is not suitable for direct use
by a Fortran routine because it may contain pointers to its elements, or
indeed be a vector of pointers to its rows etc. There is also the important
fact that Fortran lays out its arrays in column order whereas languages
like Aldor and C tend to use row order.
Supposing that we want to pass an array of objects of domain T to For-
tran. It simplifies matters greatly if T satisfies DenseStorageCategory.
This means that each element of the array can be stored in a fixed amount
of memory and so the array can be constructed as a sequence of objects
rather than a sequence of pointers to objects. By default the compiler
will try and determine this automatically, but it can be done by hand to
improve efficiency.
For an array-like object to be passed to Fortran, it must satisfy either
FortranArray or FortranMultiArray category, depending on whether
it is a single-dimensional or multi-dimensional object. These provide
exports for converting between the Aldor and Fortran representations,
and are automatically applied by the compiler. Domains in the standard
library which can be used in this way include PrimitiveArray, Array
and TwoDimensionalArray.
There are two special cases to these rules. The first concerns arrays
of strings, in Aldor we need to ensure that we use a fixed sized string
representation, and that the array type satisfies the category Fortran-
FStringArray. An example of a domain which can be used in this way
is Array FixedString(10).
The second special case arises when we are defining an Aldor function
to be passed to (and called from) Fortran. Here we are forced to use
PrimitiveArray for all array types since it is the Fortran runtime envi-
ronment rather than Aldor’s which will set-up the call. In practice this
is not too inconvenient.

20.3.2
Passing
Subprograms
as Arguments

The use of Fortran Function and Subroutine arguments is supported.
For example:

DF ==> DoubleFloat;
import {

integrate: (DF -> DF, hi: DF, lo: DF) -> DF;
} from Foreign Fortran;

-- integrate the sin function between 0 and 1
integrate(sin, 0.0, 1.0);

-- integrate the cos(fn) function between 0 and 1
foo(fn: DF -> DF): DF == {

integrand(x: DF): DF == cos fn x;
integrate(integrand, 0.0, 1.0);

200 · Using Aldor with Fortran-77

}

In the examples, ‘integrate’ is being used with functions which are
either exported from a domain or package, or locally defined.
There is one restriction on the way dummy procedures can be used. An
Aldor function which calls a Fortran routine cannot be invoked recur-
sively by the call to the Fortran routine.

20.4
Calling
Aldor
Routines
from
Fortran

This is very similar to the way Aldor routines can be passed to C func-
tions. There is one restriction — exported functions must be defined in
the top level of a file, not within an add-body. Of course the exported
function itself may use other functions defined in add bodies so this is
not really a problem.
For example, consider the Aldor program:
#include "aldor"

import from IntegerPrimesPackage, Integer;

export {ISPRIM:MachineInteger -> Boolean} to Foreign Fortran;

ISPRIM(n:MachineInteger):Boolean == prime?(n::Integer)

This creates a function isprim which can be called from Fortran. Note
that the name of the function must be legal in the Fortran world (strictly
speaking this means no more than six characters and uppercase, although
most modern compilers take a more relaxed view!). A Fortran routine
to call this function might look like:

INTEGER I
LOGICAL ISPRIM, B
EXTERNAL ISPRIM

C
DO 100 I=1,100
B=ISPRIM(I)
IF (B) THEN

PRINT*,I," is prime"
ENDIF

100 CONTINUE
C

END

Notice that in Fortran only the return type is given, and that the data
type correspondence is the same as that provided earlier.
To compile and link the routines together we might do the following:
% aldor -Fo isprime.as

% f77 testprime.f isprime.o -L$ALDORROOT/lib -laldor -lfoam

20.4. Calling Aldor Routines from Fortran · 201

Note that as well as linking to the appropriate Aldor libraries it is im-
portant to link to the foam library.

20.5
Platform-
dependent
details

The foreign language interface of Fortran is not standardised, and so
there are some details which vary from platform to platform. It is possible
to tailor an installation of Aldor to a particular Fortran compiler by
editing the file $ALDORROOT/include/aldor.conf and setting the values
of the following keys:
• fortran-name-scheme (indicates how Fortran identifiers are deco-

rated in C: common cases are underscore which means an under-
score character is added to the end of the name and no-underscore
which actually means that the identifiers are undecorated);
• fortran-cmplx-fns (indicates the protocol for returning Complex

values via the name of a function);
• fortran-libraries (list of linker options needed to link Fortran

programs to Aldor);
• fortran-io-init-fun (a function which should be called before

any Fortran routines are invoked, typically to initialise streams for
standard input and output).

The configuration file is discussed in more detail in chapter 24.

20.6
Larger
Examples

This first example shows the use of a Fortran routine to find a root of a
function (in this case e−x − x) in an interval. Note the use of Ref types
to return results.

#include "aldor"
#include "aldorio"

DF ==> DoubleFloat;
SI ==> MachineInteger;
import

{ root:(DF, DF, DF, DF -> DF, Ref DF, Ref SI} -> () ; }
from Foreign Fortran;

-- Interval containing root
lo : DF := 0.0;
hi : DF := 1.0;

-- Tolerance
eps : DF := 0.00001;

-- Result
x : DF := 0;

errorFlag : SI := -1;

f(x:DF):DF == exp(-x) -x;

root(lo, hi, eps, f, ref x, ref errorFlag);

202 · Using Aldor with Fortran-77

if not zero? ifail then stdout << x << newline;

The following code calls the NAG library function e04jyf to minimise
the expression (x1 + 10x2)2 + 5 (x3 − x4)2 + (x2 − 2x3)4 + 10 (x1 − x4)4

subject to the constraints:

1 < x1 < 3
−2 < x2 < 0
−∞ < x3 < ∞

1 < x4 < 3

It uses the BasicMath library to provide the mathematical domains. For
more details of what the various arguments do please see the NAG For-
tran Library Manual, which is available in both printed and electronic
versions.
There are several points to note about this example:

1. When importing the Fortran routine we have named each parame-
ter. This is not strictly necessary but makes the program easier to
read.

2. Note that in the import statement we have chosen a particular
Aldor type for each parameter. In some cases we are using Vector
and in others Array since this is natural for our application, even
although the traget Fortran type is identical in both cases.

3. Note the cunning definition of objfun, which makes use of p which
is defined in an outer scope. Also note the use of PrimitiveArrays
as parameters (see the note earlier) and the modifiable argument
fc.

4. The workspace arrays have been constructed using new. The cat-
egory LinearAggregate defines an export empty which creates an
aggregate with no values, but its semantics do not require that any
memory be allocated. Thus the use of empty should be avoided in
cases like this.

20.6. Larger Examples · 203

#include "basicmath"
DF ==> DoubleFloat;
SI ==> MachineInteger;
VDF ==> Vector DF;
VSI ==> Vector SI;
ASI ==> Array SI;
ADF ==> Array DF;
POL ==> Polynomial DF;
S ==> OrderedSymbol;
PDF ==> PrimitiveArray DF;
PSI ==> PrimitiveArray SI;

import {e04jyf : (n : SI, ibound : SI,
funct1 : (SI, PDF, Ref DF, PSI, PDF) -> (),
bl : VDF, bu : VDF, x : VDF, f : Ref DF,
iw : VSI, liw : SI, w : VDF, lw : SI,
iuser : ASI, user : ADF, ifail : Ref SI) -> () ;

} from Foreign Fortran;

import from DF, SI, VDF, ADF, POL, S, List S, NonNegativeInteger;

minimise(lower:VDF, upper:VDF, start:VDF, p:POL, vars:List S):()=={

n : SI := #lower;

objfun(nn:SI, xc:PDF, fc:Ref DF, iusr:PSI , usr:PDF):() == {
vals : List DF := [xc.i for i in 1..nn];
update!(fc, ground eval(p,vars,vals));

}

-- Workspace:
user : ADF := new(0,0);
iuser : ASI := new(0,0);
liw : SI := n+2;
iw : VSI := new(liw,0);
lw : SI := n*(n-1) quo 2+12@SI*n;
w : VDF := new(lw,0);

-- Output Parameters
f : DF := 1.0;
ifail : SI := -1;

e04jyf(n, 0, objfun, lower, upper, start, ref f, iw, liw, w, lw,
iuser, user, ref ifail);

print << "fail = " << ifail << " minimum = " << f << newline;
print << "minimum point = ";
for i in 1..n repeat

outputAsFixed(print, start.i, 8, 4)$FormattedNumericalOutput;

}

lower : VDF := [1.0, -2.0, -1.0e6, 1.0];
upper : VDF := [3.0, 0.0, 1.0e6, 3.0];
start : VDF := [3.0, -1.0, 0.0, 1.0];

-- Set up symbols and build polynomial
vlist : List S := [+"x1", +"x2", +"x3", +"x4"];
x1 : POL := coerce(+"x1"); x2 : POL := coerce(+"x2");
x3 : POL := coerce(+"x3"); x4 : POL := coerce(+"x4");
p : POL := (x1+10.0*x2)^(+2)+5.0*(x3-x4)^(+2)+(x2-2.0*x3)^(+4)+

10.0*(x1-x4)^(+4);
minimise(lower,upper,start,p,vlist);

204 · Using Aldor with Fortran-77

PART IV

Sample Programs

CHAPTER 21

Sample programs

In this chapter we show several examples of Aldor programs. The first
few give a brief introduction to the language, followed by some examples
using more advanced features of the language. The final few examples
show how Aldor can variously emulate or interact with other languages.
This chapter supplements the material in chapter 2 and in part II, the
language description. For reference, the examples are as follows:
Hello A few simple constructs p. 208
Fact Function definition and calling, and simple p. 209

iteration
Greet More function definitions, user input and p. 210

importing
Cycle Functions and multi-valued returns p. 211
Gener Generators and iteration p. 213
Symbol Defining domains p. 215
Stack Defining parameterised domains p. 217
Tree Defining recursive data types p. 220
Swap Dependent types and higher order functions p. 222
Object Object-oriented programming p. 223
Mandel Machine floating point arithmetic p. 227
Imod Integers modulo some number p. 228
Extend Extensions p. 230
TextIo Input and output p. 231
Quanc8 Fortran-style programming p. 233

207

21.1
Hello

This program prints out a familiar greeting, and then exits. Line 1
allows the use of the base Aldor library in this program. Line 3 prints
the greeting. The program shows how a simple program is written, and
the syntax for printing objects.

1 #include "aldor"
2 #include "aldorio"
3
4 stdout << "Hello, world!" << newline;

line 1 Include the file “aldor.as”. This allows all the domains and
categories in the standard library to be used.

line 2 Include the file “aldorio.as”. This allows to import automati-
cally the necessary types to do some input/output.

line 4 Print the message. “stdout” (available because “aldorio.as”
has been included) is an identifier referring to the console output
stream. “<<” is an infix operator that prints an object to a given
stream, and returns the stream as a value. This allows a cascade
of “<<” calls.

208 · Sample programs

21.2
Factorial

The next example shows how to define and call functions in Aldor, and
a simple form of iteration.

1 #include "aldor"
2 #include "aldorio"
3 #pile
4
5 rfact(n: Integer): Integer == if n = 0 then 1 else n*rfact(n-1)
6
7 ifact(n: Integer): Integer ==
8 i := 1
9 while n > 1 repeat

10 i := i * n
11 n := n - 1
12 i

This program defines two functions for calculating the factorial of an
integer. The first shows a simple recursive version, the second is an
iterative version.

line 3 Activates the “piling” syntax mode (see Section 4.8 for details).
line 5 Defines a function called rfact, which takes an Integer and

returns the result as an Integer
line 7 Defines a function ifact with the same signature as rfact.
line 8 Assigns the Integer 1 to i. Note that no declaration is needed

if the compiler can infer the type of i. In this example, 1 must
have been exported from the domain Integer. If, for example,
MachineInteger was also imported, a declaration would have been
necessary.

line 9 The repeat keyword is used to indicate a loop, and the while
keyword gives the test for the loop, in this case the loop will exit
once n is less than or equal to one.

line 10,11 The loop body — multiply i and decrement n by one. Note
that it is legal to assign to a function’s parameters.

line 12 The last statement in the function body gives the value to be
returned.

21.2. Factorial · 209

21.3
Greetings

Most operations in Aldor are defined in and exported by domains. In
order to import from a domain, the import statement is used. Imports
implicitly happen for the types of parameters of a function, and its re-
turn value. The example program below shows the use of the import
statement, and also how to read user input.

1 #include "aldor"
2
3 -- the following imports can be avoided by including "aldorio"
4 import from File; -- so we can do input
5 import from TextReader; -- for stdin
6 import from TextWriter; -- for stdout
7 import from Character; -- for newline
8 import from String; -- for string literals
9

10 -- function to prompt for and return the user’s name from the console
11 readName(): String == {
12 stdout << "What is your name?" << newline;
13 line := <<$String stdin;
14 -- delete the trailing newline, and return the result
15 line := [c for c in line | c ~= newline];
16 line;
17 }
18
19 -- main function
20 greet(): () == {
21 name := readName();
22 stdout << "Hello " << name << ", and goodbye..." << newline;
23 }
24
25 greet();

This program declares functions to read a name from the console, and
then print a personalised note for that name.

line 1 include the standard library
line 4 to 8 import operations from the given domains, allowing us to

use operations. Note that the import from statement is only
needed when operations have not been implicitly imported. In
this example, “aldorio.as” was not included and so imports for
input/output are necessary.

line 11 Defines a function, readName. Note that the () indicates that
the function takes no parameters.

line 20 Defines a function, greet. The return type of the function, ()
indicates that the function does not return a value.

line 25 Call the function.

The program produces the following output (user input is in italic):

What is your name?
Aldor
Hello Aldor, and goodbye...

210 · Sample programs

21.4
Cycle

This example demonstrates the manipulation of functions as first-class
values, creating new closures over the course of the computation and
multiple valued returns.

1 #include "aldor"
2 #include "aldorio"
3
4 import from Integer;
5
6 -- Multiple value returns and functional composition.
7 -- Only creating the closures by * should allocate storage.
8
9 I ==> Integer;

10 III ==> (I,I,I);
11 MapIII ==> (I,I,I) -> (I,I,I);
12
13 id: MapIII ==
14 (i:I, j:I, k: I): III +-> (i,j,k);
15
16 (f: MapIII) * (g: MapIII): MapIII ==
17 (i:I, j:I, k: I): III +-> f g (i,j,k);
18
19 (f: MapIII) ^ (p: Integer): MapIII == {
20 p < 1 => id;
21 p = 1 => f;
22 odd? p => f*(f*f)^(p quo 2);
23 (f*f)^(p quo 2);
24 }
25
26 -- test routine
27 main(): () == {
28 cycle(a: I, b: I, c: I): III == (c, a, b);
29
30 printIII(a: I, b: I, c: I): () == {
31 stdout << "a = " << a << " b = "
32 << b << " c = " << c << newline
33 }
34 printIII (cycle(1,2,3));
35 printIII (cycle cycle (1,2,3));
36 printIII ((cycle*cycle)(1,2,3));
37 printIII ((cycle^10) (1,2,3));
38 }
39
40 main()
41

line 9–11 Define some macros as shorthand for some common types
used in the program. “MapIII” is a map type for functions that
take three integers and return three integers.

line 13 The identity function for MapIII. Note that “+->” produces a
closure (otherwise known as a “lambda expression”, “anonymous
function” or just “function”).

line 16 Define a function “*” (which is an infix operator) to be a func-
tion that given two functions (of type MapIII) returns a third func-
tion (in this case the composition of the two functions).

line 19–24 Define a function that returns ff · · · f︸ ︷︷ ︸
n times

(a, b, c).

21.4. Cycle · 211

The new function is computed by repeated squaring.
line 27–38 A test routine.
line 28, 30 One can define constants inside functions. These have scope

local to the function.

The program produces the following output:

a = 3 b = 1 c = 2
a = 2 b = 3 c = 1
a = 2 b = 3 c = 1
a = 3 b = 1 c = 2

212 · Sample programs

21.5
Generators

Iteration in Aldor is mainly achieved through the use of generators.
These are objects representing the state of an iteration, and may be
passed around as first-class values. There are two ways of creating gen-
erators in Aldor: The generate keyword, and the collect form, created
by iterators.

1 #include "aldor"
2
3 F ==> DoubleFloat;
4
5 exp(f: F): F == {
6 e: F := 1;
7 m: MachineInteger := 1;
8 x: F := e;
9 for i in 2..12 repeat {

10 x := x * f;
11 m := m * i;
12 e := e + x/(m::F);
13 }
14 e;
15 }
16
17 floatSequence(): Generator F == generate {
18 x: F := 0.0;
19 repeat {
20 yield exp(-x*x);
21 x := x + 0.05;
22 }
23 }
24
25 runningMean(g: Generator F): Generator F == {
26 n: MachineInteger := 0;
27 sum: F := 0;
28 generate {
29 for x in g repeat {
30 sum := sum + x;
31 n := next(n);
32 yield sum/(n::F);
33 }
34 }
35 }
36
37 step(n: MachineInteger)(a: F, b: F): Generator F == generate {
38 m: MachineInteger := prev(n);
39 del: F := (b - a)/m::F;
40 for i in 1..n repeat {
41 yield a;
42 a := a + del;
43 }
44 }
45
46
47 main(): () == {
48 import from F, MachineInteger, TextWriter, Character, String;
49 for i in runningMean(x for x in step(11)(0.0, 1.0)) repeat
50 stdout << i << newline;
51
52 for i in 1..10 for x in runningMean(floatSequence()) repeat
53 stdout << "next: " << x << newline;
54 }
55
56 main();

21.5. Generators · 213

line 5 Define a helper function which computes an approximated expo-
nential for a DoubleFloat value.

line 17 Define a function which creates a generator of DoubleFloats.
line 17 The generate keyword introduces the generator body. This is

evaluated when a value from the generator is needed, up to the first
yield statement, the value of which is returned as the next value
for the generator.

line 18–23 The body of the generator. In this case we yield the value
of e−x

2
for increasing values of x.

line 25 Define a function to calculate the running mean of a sequence.
line 28–34 The generator body. The value is calculated by maintaining

a sum of values so far, and dividing by the number of values.
line 37 Define a helper function which returns a generator of steps

between a and b using n as the size of the interval.
line 49 create a generator and iterate over it. In this case the generator

is the running average of 0, 0.1, . . . , 1.0.
line 52 where more than one iterator (formed by for and while) pre-

cedes the repeat, iteration is in parallel and terminates when one
of the iterators reaches its end condition. In this case we want the
first few values of a generator, so the parallel iteration ensures that
the loop will complete at or before 10 iterations.

There is a further example on the use of generators on page 220.

214 · Sample programs

21.6
Symbol

Most programming in Aldor is done by defining domains and packages.
Here we give a small example of a domain. A package is simply a domain
which does not export any operations involving values of type %.
Typically, writing a domain is done in four stages:

1. decide what operations a domain will provide, and from which
categories it should inherit,

2. decide how to represent the domain,
3. implement the operations,
4. test the domain.

In this example we show how to define a domain. The example is a
symbol datatype which ensures that only a single instance of a given
symbol is created.

1 #include "aldor"
2 #include "aldorio"
3
4 define BasicType: Category == Join(OutputType, PrimitiveType);
5
6 Symbol: BasicType with {
7 name: % -> String; ++ the name of the symbol
8 coerce: String -> %; ++ conversion operations
9 coerce: % -> String;

10 } == add {
11 Rep == String;
12
13 import from Rep, Pointer;
14
15 local symTab: HashTable(String, %) := table();
16
17 name(sym: %): String == sym::String;
18
19 coerce(sym: %): String == rep(sym);
20
21 coerce(s: String): % == {
22 symb?: Partial(%) := find(s, symTab);
23 import from Boolean;
24 not failed? symb? => retract symb?;
25 str := copy s;
26 set!(symTab,str,per str);
27 per str;
28 }
29
30 (s1: %) = (s2: %): Boolean == rep s1 = rep s2;
31 (p: TextWriter) << (sym: %): TextWriter == {
32 p << "’" << sym::String << "’";
33 }
34 }
35
36 Test(): () == {
37 import from Symbol;
38
39 stdout << "hello"::Symbol << newline;
40 }
41 Test()
42

21.6. Symbol · 215

line 4 Define the category BasicType which is the union of PrimitiveType
and OutputType.

line 6 Define symbol to be a constant with the given type — in this case
Symbol is a Domain which implements BasicType and provides 3
additional operations.

line 6–9 Signatures for operations on the domain. % in the type refers
to “this Domain”.

line 10 The add expression creates a domain from a sequence of defini-
tions.

line 11 Define how Symbols, our new type are represented. In this
case, we just use a string. If the signature required that additional
information was stored on the symbol we might want to use a
different representation.

line 13 Allow operations from the representation domain, i.e. String
to be used.

line 15 % can be used inside the add body to refer to the current domain.
line 15 define a local variable for storing the symbol table.
line 17–34 Define functions exported by the domain.
line 19 and 26 The operation rep allows a value of type % to be treated

as if it were of type Rep. per is the inverse operation, i.e. it con-
verts an object of type Rep into type %. These two operations are
currently macros1. See Section 2.4.

1 per can be thought of as ‘rep backwards’, or as ‘percent’.

216 · Sample programs

21.7
Stack

It is possible to define a function whose return type is a domain. In
this case, the result is called a parameterised domain. The example is
a simple stack with a few operations for creating new stacks, as well as
pushing and popping values from an existing stack.

1 #include "aldor"
2 #include "aldorio"
3
4 -- implementation of stacks via lists
5 -- the lines starting with ++ are saved in the output of
6 -- the compiler, and may be browsed with an appropriate tool
7
8 Stack(S: OutputType): OutputType with {
9 empty?: % -> Boolean; ++ test for an empty stack

10 empty: () -> %; ++ create an empty stack
11 push!:(S, %) -> %; ++ put a new element onto the stack
12 pop!: % -> S; ++ remove the top element and return it
13 top: % -> S; ++ return the top of the stack
14
15 export from S;
16 -- expose all operations from S
17 -- when Stack S is imported
18 } == add {
19 -- Stacks are represented using a list.
20 -- To go between the representation and % we use the
21 -- rep and per functions.
22 Rep == Record(contents: List S);
23 import from Rep;
24
25 -- utility functions
26 local contents(stack: %): List S == rep(stack).contents;
27
28 -- simple functions
29 empty(): % == per [empty];
30 empty?(s: %): Boolean == empty? contents s;
31 top(s: %): S == first contents s;
32
33 push!(elt: S, s: %): % == {
34 rep(s).contents := cons(elt, contents s);
35 s
36 }
37
38 pop!(s: %): S == {
39 next := first contents s;
40 rep(s).contents := rest contents s;
41 next;
42 }
43
44 -- needed to satisfy OutputType
45 import from String;
46 (tw: TextWriter) << (s: %): TextWriter == tw << "<stack>";
47 }
48
49
50 test(): () == {
51 -- Importing the domains involed in the next two
52 -- lines is made by the affectations.
53 l: List MachineInteger := [1,2,3,4,5,6];
54 stack: Stack MachineInteger := empty();
55 for x in l repeat
56 push!(x, stack);

21.7. Stack · 217

57 -- Importing the domains involed in the next
58 -- line is needed.
59 stdout << "stack is:" << stack << newline;
60 while not empty? stack repeat {
61 stdout << "Next is: " << top stack << newline;
62 pop! stack;
63 }
64 }
65
66 test()
67

The chosen representation type is a list over the same domain as the
stack. This allows us to implement the operations with minimum com-
plications. A better representation might be a linked list of arrays, but
this would clutter the example more than necessary.

line 8 Define Stack to be a function that takes a BasicType (i.e. most
of the domains in Aldor), and returns an object which satisfies
BasicType, and additionally provides some stack operations. The
interface is specified by the with construct.

line 9 Declare an operation ‘empty?’ which takes a value from the cur-
rent domain as an argument, and returns a Boolean value. The line
starting ‘++’ is a description comment, and is saved along with the
declaration of empty? in the intermediate file.

line 16 The ‘export from’ statement indicates that all operations ex-
ported by S should be imported when Stream S is imported.

line 23 Define the representation of the Stack. This form of a define
statement (without a declaration) implies that the type of Rep is
exactly that of the type of the right hand side of the expression,
i.e. Record(contents: List S).

line 24 Allow operations from Rep to be used. We do not need to say
import from List S, as Record exports its arguments.

line 27 Define a function which returns the internal list of values main-
tained by the stack.

line 30–43 Define the operations required explicitly by the category.
line 46–47 Define the operations needed to satisfy inherited operations.

218 · Sample programs

Once the domain is defined, it may be tested. Aldor’s interactive loop,
“aldor -G loop” is useful here.

% aldor -G loop
%1 >> #include ”stack.as”
stack is:<stack>
Next is: 6
Next is: 5
Next is: 4
Next is: 3
Next is: 2
Next is: 1
%2 >> import from Stack MachineInteger
%3 >> s: Stack MachineInteger := empty()
<stack> @ Stack(MachineInteger)
%4 >> push!(12, s)
<stack> @ Stack(MachineInteger)
%5 >> top s
12 @ MachineInteger
%5 >> pop! s
12 @ MachineInteger

We should probably test it a little further (e.g. boundary conditions),
but this gives the general idea.

21.7. Stack · 219

21.8
Recursive
structures

This program shows a recursively defined data type: the type of binary
trees parameterised with respect to the type of data placed on the interior
nodes. This tree type provides several generators which allow the trees
to be traversed in different ways.

1 #include "aldor"
2 #include "aldorio"
3
4 Tree(S: OutputType): OutputType with {
5 export from S;
6
7 empty: %;
8 tree: S -> %;
9 tree: (S, %, %) -> %;

10
11 empty?: % -> Boolean;
12
13 left: % -> %;
14 right: % -> %;
15 node: % -> S;
16
17 preorder: % -> Generator S;
18 inorder: % -> Generator S;
19 postorder: % -> Generator S;
20 }
21 == add {
22 Rep == Record(node: S, left: %, right: %);
23 import from Rep;
24
25 empty: % == nil$Pointer pretend %;
26 empty?(t: %): Boolean == nil?(t pretend Pointer)$Pointer;
27
28 tree(s: S): % == per [s, empty, empty];
29 tree(s: S, l: %, r: %): % == per [s, l, r];
30
31 local nonempty(t: %): Rep == {
32 import from String;
33 empty? t => error "Taking a part of a non-empty tree";
34 rep t
35 }
36
37 left (t: %): % == nonempty(t).left;
38 right(t: %): % == nonempty(t).right;
39 node (t: %): S == nonempty(t).node;
40
41 preorder(t: %): Generator S == generate {
42 if not empty? t then {
43 yield node t;
44 for n in preorder left t repeat yield n;
45 for n in preorder right t repeat yield n;
46 }
47 }
48 inorder(t: %): Generator S == generate {
49 if not empty? t then {
50 for n in inorder left t repeat yield n;
51 yield node t;
52 for n in inorder right t repeat yield n;
53 }
54 }
55 postorder(t: %): Generator S == generate {
56 if not empty? t then {
57 for n in postorder left t repeat yield n;

220 · Sample programs

58 for n in postorder right t repeat yield n;
59 yield node t;
60 }
61 }
62 (tw: TextWriter) << (t: %): TextWriter == {
63 import from String;
64 import from S;
65
66 empty? t => tw << "empty";
67 empty? left t and empty? right t => tw << "tree " << node t;
68
69 tw << "tree(" << node t << ", "
70 << left t << ", " << right t << ")"
71 }
72 }
73
74
75 main():() == {
76 import from Tree String;
77 import from List String;
78
79 t := tree("*", tree("1", tree "a", tree "b"),
80 tree("2", tree "c", tree "d"));
81
82 stdout << "The tree is " << t << newline;
83 stdout << "Preorder: " << [preorder t] << newline;
84 stdout << "Inorder: " << [inorder t] << newline;
85 stdout << "Postorder: " << [postorder t] << newline;
86 }
87
88 main();

When compiled and run, this program gives the following output:

The tree is tree(*, tree(1, tree a, tree b), tree(2, tree c, tree d))
Preorder: [*,1,a,b,2,c,d]
Inorder: [a,1,b,*,c,2,d]
Postorder: [a,b,1,c,d,2,*]

21.8. Recursive structures · 221

21.9
Swap

Higher order functions which construct types are first-class values. This
example shows how to swap structure layers in a data type by using
higher order functions as parameters to a generic program.

1 #include "aldor"
2 #include "aldorio"
3 #pile
4
5 I ==> MachineInteger;
6 Ag ==> (S: Type) -> BoundedFiniteLinearStructureType S;
7
8 -- This function takes two type constructors as arguments and
9 -- produces a new function to swap aggregate data structure layers.

10
11 swap(X:Ag,Y:Ag)(S:Type)(x:X Y S):Y X S ==
12 import from Y S, X S
13 [[s for s in y]for y in x]
14
15 import from I, List(I);
16
17 -- Form an array of lists:
18 al: Array List I := [[i+j-1 for i in 1..3] for j in 1..3]
19
20 stdout << "This is an array of lists: " << newline
21 stdout << al << newline << newline
22
23 -- Swap the structure layers:
24
25 la: List Array I := swap(Array,List)(I)(al)
26
27 stdout << "This is a list of arrays: " << newline
28 stdout << la << newline

line 6 Define a macro “Ag” as a shorthand for the type which takes
a Type as an argument, and returns a second type which is a
BoundedFiniteLinearStructureType over it.

line 11–13 Define the “swap” function. This curried definition ex-
changes the “X” and “Y” layers in a structure. This function is
written generically to use
• “generator” from X Y S for the outer iteration,
• “generator” from Y S for the inner iteration,
• “bracket” from X S as the inner constructor,
• “bracket” from Y X S as the outer constructor.

line 25 Call “swap” to exchange the Array and List layers.

When executed via “aldor -G run swap.as,” the following output is
produced.

This is an array of lists:
[[1,2,3],[2,3,4],[3,4,5]]

This is a list of arrays:
[[1,2,3],[2,3,4],[3,4,5]]

222 · Sample programs

21.10
Objects

In Aldor, values are not self-identifying — there is no way of retrieving
a given value’s type from the value itself.
We can implement this functionality in the “Object” datatype, which
holds both a value and its type.
The following example shows the implementation of Object and a use of
it.

1 #include "aldor"
2 #include "aldorio"
3
4 -- OutputType objects ---
5 --
6 -- These objects can be printed because each belongs to some OutputType.
7 --
8
9 Object(C: Category): with {

10 object: (T: C, T) -> %;
11 avail: % -> (T: C, T);
12 }
13 == add {
14 Rep == Record(T: C, val: T);
15 import from Rep;
16
17 object (T: C, t: T) : % == per [T, t];
18 avail (ob: %) : (T: C, T) == explode rep ob;
19 }
20
21 main():() == {
22 import from Integer, List Integer;
23 bobfun(bob: Object OutputType): () == {
24 f avail bob where
25 f(T: OutputType, t: T) : () == {
26 stdout << "This prints itself as: " << t << newline;
27 }
28 }
29 import from Object OutputType;
30 boblist: List Object OutputType := [
31 object (String, "Ahem!"),
32 object (Integer, 42),
33 object (List Integer, [1,2,3,4])
34];
35 for bob in boblist repeat bobfun bob;
36 }
37
38 main();
39

line 9 Define the Object datatype. As we can see there is a constructor
called object to bundle a value and its type and a “dismantler”
called avail to get the value and the type from a previously con-
structed object. This domain is parameterized by a category called
C. All types that we can bundle in an Object(C) will satisfy the
category C.

line 23 Define a function, “bobfun”, to take object arguments. The
arguments are objects whose underlying type satisfies the category
OutputType.

21.10. Objects · 223

line 24 Use the “avail” operation to split an object into its type and
value components, then call the local function “f” on the dependent
type/value pair.

line 26 Print the object value. The “<<” operation is available, because
each object’s type satisfies OutputType.

line 30 Form a list of OutputType objects. Each is formed with the
“object” function from Object(OutputType).

line 35 Call “bobfun” on each of the objects in the list.

When run with “aldor -G run objectb.as” this program produces the
following output:

This prints itself as: Ahem!
This prints itself as: 42
This prints itself as: [1,2,3,4]

The richer the category argument to Object, the more interesting op-
erations may be performed on the object values. A second example of
using Object is shown below. In this case each object value belongs to
some ring, and this fact is used in the arithmetic calculation.

1 #include "aldor"
2 #include "aldorio"
3
4 -- Arithmetic objects --
5 --
6 -- The objects have arithmetic because each belongs to ArithmeticType.
7 --
8
9 Object(C: Category): with {

10 object: (T: C, T) -> %;
11 avail: % -> (T: C, T);
12 }
13 == add {
14 Rep == Record(T: C, val: T);
15 import from Rep;
16
17 object (T: C, t: T) : % == per [T, t];
18 avail (ob: %) : (T: C, T) == explode rep ob;
19 }
20
21
22 main():() == {
23 import from MachineInteger, Integer;
24 robfun(rob: Object IntegerType): () == f avail rob where {
25 f(T: IntegerType, r: T): () == {
26
27 -- Object-specific arithmetic:
28 s := (r + 1)^3;
29 t := (r - 1)^4;
30 u := s * t;
31

224 · Sample programs

32 -- Object-specific output:
33 stdout << "r = " << r << newline;
34 stdout << " s = (r + 1) ^ 3 = " << s << newline;
35 stdout << " t = (r - 1) ^ 2 = " << t << newline;
36 stdout << " s * t = " << u << newline;
37
38 -- Can check for additional properties and use if there.
39 if T has TotallyOrderedType then {
40 stdout << "The result is ";
41 if u < 0 then stdout << "negative";
42 if u > 0 then stdout << "positive";
43 if u = 0 then stdout << "zero";
44 stdout << newline;
45 }
46 else
47 stdout << "No order for this object." << newline;
48
49 stdout << newline;
50 }
51 }
52 import from DoubleFloat, Integer;
53 import from Object IntegerType;
54 roblist: List Object IntegerType := [
55 object (Integer, -42),
56 object (MachineInteger, -42)
57];
58 for rob in roblist repeat robfun rob
59 }
60
61 main();

line 24 Define a function, “robfun,” to take object arguments. This
time the arguments are objects whose type slots satisfy the category
IntegerType. Again “avail” is used to split an object into its
component parts (type and value).

line 28–30 Perform various arithmetic operations on the value. All of
“+” “-” “*” “^” and “1” are provided by the particular object.

line 33–36 Print the results of the arithmetic. This is possible because
each IntegerType provides a “<<” operation.

line 39 The has operator tests whether a given domain satisfies a par-
ticular category. This test is made at run-time.

line 40–44 Inside an if statement, if it can be deduced that an im-
ported domain satisfies an additional category (using the informa-
tion in the evaluation of the if expression), then the additional
operations are made available within the “then” branch of the if
statement. In this case, “<” and “>” are available because T is seen
to also satisfy TotallyOrderedType.

The output produced when running this program with the command
“aldor -G run objectb.as” is shown below.
r = -42

s = (r + 1) ^ 3 = -68921
t = (r - 1) ^ 2 = 3418801
s * t = -235627183721

21.10. Objects · 225

The result is negative

r = -42
s = (r + 1) ^ 3 = -68921
t = (r - 1) ^ 2 = 3418801
s * t = 596017559

The result is positive

226 · Sample programs

21.11
Mandel

The next example shows the use of machine-level floating point in Aldor.
This program would be a bit simpler if we first implemented a Complex
domain.

1 #include "aldor"
2 #include "aldorio"
3
4 MI ==> MachineInteger;
5 F ==> DoubleFloat;
6
7 step(n: MachineInteger)(a: F, b: F): Generator F == generate {
8 m: MachineInteger := prev(n);
9 del: F := (b - a)/m::F;

10 for i in 1..n repeat {
11 yield a;
12 a := a + del;
13 }
14 }
15
16 default minR, maxR, minI, maxI: F;
17 default numR, numI, maxIters: MI;
18 default drawPt: (r: MI, i: MI, n: MI) -> ();
19
20 drawMand(minR, maxR, numR, minI, maxI, numI, drawPt, maxIters): () == {
21
22 mandel(cr: F, ci: F): MI == {
23 zr: F := 0;
24 zi: F := 0;
25 n: MI := 0;
26 while (zr*zr + zi*zi) < 4.0 for free n in 1..maxIters repeat {
27 zr := zr*zr -zi*zi + cr;
28 zi := 2.0*zi*zr + ci;
29 }
30 return n;
31 }
32
33 for i in step(numI)(minI, maxI) for ic in 1..numI repeat
34 for r in step(numR)(minR, maxR) for rc in 1..numR repeat
35 drawPt(rc, ic, mandel(r,i));
36 }
37
38 import from F;
39 maxN: MI == 100;
40 maxX: MI == 25;
41 maxY: MI == 25;
42
43 drawPoint(x: MI, y: MI, n: MI): () =={
44 if n = maxN then stdout << " ";
45 else if n < 10 then stdout << " " << n;
46 else stdout << " " << n;
47 if x = maxX then stdout << newline;
48 }
49
50 drawMand(-2.0, -1.0, maxX, -0.5, 0.5, maxY, drawPoint, maxN);
51

Machine level operations are done inline when the optimiser is used while
compiling (use the options “-Q3 -Qinline-limit=10”). This has the
result that the generated code speed is comparable with that of the
equivalent code in languages such as C.

21.11. Mandel · 227

21.12
Integers
mod n

This example shows how add-inheritance can be used in the implemen-
tation of integers modulo a particular number. We first define a category
and a generic member of the category, called ModularIntegerNumberRep.
We then have two specific instances of the category which inherit most of
their operations from the generic domain. Note that in the definition of
MachineIntegerMod we over-ride the generic multiplication with some-
thing more efficient. Also note that the definition of Rep is required in
both the specific implementations so that the rep and per macros will
work, however it is essential that it is compatible with the Rep in the
generic case.

1 ---
2 ----
3 ---- imod.as: Modular integer arithmetic.
4 ----
5 ---
6
7 #include "aldor"
8
9 define ModularIntegerType(I: IntegerType):Category ==

10 ArithmeticType with {
11 integer:Literal -> %;
12 coerce: I -> %;
13 lift: % -> I;
14 inv: % -> %;
15 /: (%, %) -> %;
16 }
17
18
19 ModularIntegerNumberRep(I: IntegerType)(n: I):
20 ModularIntegerType(I) with
21 == add {
22 Rep == I;
23 import from Rep;
24
25 0: % == per 0;
26 1: % == per 1;
27
28 (^)(x:%,n:MachineInteger):% ==
29 binaryExponentiation!(x, n)$BinaryPowering(%,MachineInteger);
30
31 (x: %) * (y: %): % == per((rep x * rep y) mod n);
32 commutative?: Boolean == true;
33
34 (port: TextWriter) << (x: %): TextWriter == port << rep x;
35
36 coerce (i: I): % == per(i mod n);
37 integer(l: Literal): % == per(integer l mod n);
38 lift (x: %): I == rep x;
39
40 zero?(x: %): Boolean == x = 0;
41 (x: %) = (y: %): Boolean == rep(x) = rep(y);
42 (x: %)~= (y: %): Boolean == rep(x) ~= rep(y);
43
44 - (x: %): % == if x = 0 then 0 else per(n - rep x);
45 (x: %) + (y: %): % ==
46 per(if (z := rep x-n+rep y) < 0 then z+n else z);
47 (x: %) - (y: %): % ==
48 per(if (z := rep x -rep y) < 0 then z+n else z);

228 · Sample programs

49
50 (x: %) / (y: %): % == x * inv y;
51
52 inv(j: %): % == {
53 local c0, d0, c1, d1: Rep;
54 (c0, d0) := (rep j, n);
55 (c1, d1) := (rep 1, 0);
56 while not zero? d0 repeat {
57 q := c0 quo d0;
58 (c0, d0) := (d0, c0 - q*d0);
59 (c1, d1) := (d1, c1 - q*d1)
60 }
61 assert(c0 = 1);
62 if c1 < 0 then c1 := c1 + n;
63 per c1
64 }
65 }
66
67
68 SI ==> MachineInteger;
69 Z ==> Integer;
70
71 MachineIntegerMod(n: SI): ModularIntegerType(SI) with {
72 lift: % -> Z;
73 } == ModularIntegerNumberRep(SI)(n) add {
74 Rep == SI;
75
76 lift(x: %): Z == (rep x)::Z;
77
78 (x: %) * (y: %): % == {
79 import from Machine;
80 (xx, yy) := (rep x, rep y);
81 xx = 1 => y;
82 yy = 1 => x;
83 -- Small case
84 HalfWord ==> 32767; --!! Should be based on max$Rep
85 (n < HalfWord) or (xx<HalfWord and yy<HalfWord) => (xx*yy)::%;
86
87 -- Large case
88 (nh, nl) := double_*(xx pretend Word, yy pretend Word);
89 (qh, ql, rm) := doubleDivide(nh, nl, n pretend Word);
90 rm pretend %;
91 }
92 }
93
94
95 IntegerMod(n: Z): ModularIntegerType(Z) with {
96 coerce: SI -> %;
97 } == ModularIntegerNumberRep(Z)(n) add {
98
99 coerce(i:SI):% == (i::Z)::%;

100 }
101

21.12. Integers mod n · 229

21.13
Extensions

Aldor allows the library types to be extended with new operations. For
example, one may wish to add a DifferentialRing category to the
language. The extension mechanism allows existing domains, such as
Integer and Polynomial to include these new categories. The extension
mechanism operates via the “extend” keyword.
The following example allows us to sort lists of symbols. The List(S) do-
main exports a sort operator if S belongs to the category TotallyOrderedType.
Although Symbol does not belong to this category String does, and we
can use this fact to implement the necessary exports in a fairly straight-
forward manner.

1 #include "aldor"
2 #include "aldorio"
3
4 MI ==> MachineInteger;
5
6 extend String:TotallyOrderedType with { } == add {
7 import from Character, MI;
8
9 (<)(u:%, v:%):Boolean == {

10 (a: MI, b: MI) := (#u, #v);
11 zero? a => not zero? b;
12 zero? b => false;
13 for i in 0..min(a,b) repeat {
14 u.i < v.i => return true;
15 u.i > v.i => return false;
16 }
17 a < b;
18 }
19 (>)(u:%, v:%):Boolean == v < u;
20 (<=)(u:%, v:%):Boolean == not (u > v);
21 (>=)(u:%, v:%):Boolean == not (v > u);
22 min(u:%, v:%):% == if u < v then u else v;
23 max(u:%, v:%):% == if u < v then v else u;
24 }
25
26 import from List String;
27
28 l1 := ["animal","aldor","apple","anaconda","atlantic"];
29 l2 := sort! copy l1;
30
31 stdout << l1 << newline;
32 stdout << l2 << newline;

line 6–24 Extend Symbol. In order to satisfy TotallyOrderedType we
need to provide six operations which in this case we implement in
terms of strings.

line 26–32 Test the extended domain constructor.

230 · Sample programs

21.14
Text input

In the next example, the Aldor TextReader and TextWriter datatypes
are used to provide a number of useful text processing operations.

1 #include "aldor"
2
3 SI ==> MachineInteger;
4 Char ==> Character;
5
6 -- Asserts that the charecter is a vowel
7 vowel?(c: Char): Boolean == {
8 import from String;
9 c = char "a" or c = char "e" or c = char "i"

10 or c = char "o" or c = char "u";
11 }
12
13 -- Remove all the vowels from the input and
14 -- write the result on the output
15 removeVowels(tr: TextReader, tw: TextWriter): () == {
16 import from Char, TextWriter, String;
17 c: Char := read! tr;
18 while (c ~= eof) repeat {
19 if not vowel? c then write!(c, tw);
20 c := read! tr;
21 }
22 }
23
24 -- Prints a string and a newline on the standard output
25 printMessage(s:String):() == {
26 import from String, TextWriter, Char;
27 stdout << s << newline;
28 }
29
30 -- Constructs a string from the characters in the list
31 -- given its length and assuming that this list needs
32 -- to be reversed
33 convert(l: List Char, n: SI): String == {
34 import from SI, Char;
35 s: String := new(n, space);
36 while (not empty? l) for i in 1..n repeat {
37 c := first l; l := rest l;
38 s.(n-i) := c;
39 }
40 s;
41 }
42
43 -- Generates the lines (as strings) from the input
44 lines(tr:TextReader): Generator String == generate {
45 import from String;
46 printMessage("entering lines");
47 c: Char := read! tr; l: List Char := []; n: SI := 0;
48 while (c ~= eof) repeat {
49 l := []; n:=0;
50 while (c ~= newline) repeat {
51 l := cons(c,l); n := n + 1; c := read! tr;
52 }
53 yield convert(l,n); c := read! tr;
54 }
55 printMessage("leaving lines");
56 }
57
58 main(): () == {
59 import from String;
60 printMessage("entering test");

21.14. Text input · 231

61 f1: File := open("/etc/passwd",fileRead);
62 f2: File := open("/tmp/passwd",fileWrite);
63 tr: TextReader := f1::TextReader;
64 tw: TextWriter := f2::TextWriter;
65 removeVowels(tr,tw);
66 close! f1;
67 close! f2;
68 f1: File := open("/tmp/passwd",fileRead);
69 tr := f1::TextReader;
70 for l in lines(tr) repeat {
71 printMessage(l);
72 }
73 close! f1;
74 printMessage("leaving test");
75 }
76
77 main();
78

line 7 Define a predicate for testing whether a given character is a vowel
line 15 Define a function to print the non-vowel characters in a file.
line 15 TextReader provides a generator on a reader which returns the

sequence of characters in the reader. TextWriter provides primi-
tives to write on a stream.

line 19 write! puts a single character onto a stream. The stream is
passed as a parameter with the name tw. A possible value for tw
would be stdout which is a value of type TextWriter and thus an
output stream. It is attached to the default output device of the
process.

line 25 Define a function to print a text message.
line 33 Define a conversion function from a list of Characters to a

String.
line 44 lines creates a generator which returns the contents of an input

stream (passed as a TextReader) as a sequence of lines terminated
by newline.

line 61 Open a file for input. The value fileRead is exported by File
and is the mode chosen to open the file.

line 62 fileWrite is also exported by File.
line 63 The file f1 is coerced to an input stream of type TextReader.
line 64 The file f2 is coerced to an output stream of type TextWriter.

232 · Sample programs

21.15
Quanc8

The next example gives a Fortran-style program for numeric integra-
tion. The program demonstrates how an algorithm described in the
pre-structured programming era may be transcribed without introduc-
ing errors by reworking its logic. The program was transcribed from the
textbook described in the first comment, and produced correct values on
its first run. Of course, if you have access to a callable library containing
the routines it should be possible to import the operations directly into
Aldor.
The “goto” construct in Aldor takes the name of a label, and transfers
control to that label. Labels are introduced by the “@” symbol.

1 #include "aldor"
2
3 R ==> DoubleFloat;
4 I ==> MachineInteger;
5
6 +++ quanc8: Quadrature, Newton-Cotes 8-panel
7 +++
8 +++ (This is a literal translation of the Fortran program given
9 +++ in ‘‘Computer Methods for Mathematical Computations’’ by Forsythe,

10 +++ Malcolm and Moler, Prentice-Hall 1977.)
11 +++
12 +++ Estimate the integral of fun(x) from a to b to a given tolerance.
13 +++ An automatic adaptive routine based on the 8-panel Newton-Cotes
14 +++ rule.
15 +++
16 +++ Input:
17 +++ fun The name of the integrand function subprogram f(x).
18 +++ a The lower limit of integration.
19 +++ b The upper limit of integration. (b may be less than a.)
20 +++ relerr A relative error tolerance. (Should be non-negative)
21 +++ abserr An absolute error tolerance. (Should be non-negative)
22 +++
23 +++ Output:
24 +++ result An approximation to the integral hopefully satisfying
25 +++ the least stringent of the two error tolerances.
26 +++ errest An estimate of the magnitute of the actual error.
27 +++ nofun The number of function values used in the calculation of
28 +++ the result.
29 +++ flag A reliability indicator. If flag is zero, then result
30 +++ probably satisfies the error tolerance. If flag is
31 +++ xxx.yyy then xxx = the number of intervals which have
32 +++ not converged and 0.yyy = the fraction of the interval
33 +++ left to do when the limit on nofun was approached.
34
35 quanc8(fun: R -> R, a: R, b: R, abserr: R, relerr: R):
36 (Xresult: R, Xerrest: R, Xnofun: I, Xflag: R)
37 == {
38 local result, errest, flag: R;
39 local nofun: I;
40 RETURN ==> return (result, errest, nofun, flag);
41
42 local w0, w1, w2, w3, w4, area, x0, f0, stone, step, cor11: R;
43 local qprev, qnow, qdiff, qleft, esterr, tolerr, temp: R;
44 default i, j : I;
45
46 qright: Array R := new(31, 0.0);
47 f: Array R := new(16, 0.0);
48 x: Array R := new(16, 0.0);

21.15. Quanc8 · 233

49 fsave: Array Array R := [new(30, 0.0) for i in 1..8];
50 xsave: Array Array R := [new(30, 0.0) for i in 1..8];
51
52 local levmin, levmax, levout, nomax, nofin, lev, nim: I;
53
54 --
55 -- *** Stage 1 *** General initializations
56 -- Set constants
57 --
58 levmin := 1;
59 levmax := 30;
60 levout := 6;
61 nomax := 5000;
62 nofin := nomax - 8 * (levmax - levout + 2 ^ (levout + 1));
63 --
64 -- Trouble when nofun reaches nofin
65 --
66 w0 := 3956.0 / 14175.0;
67 w1 := 23552.0 / 14175.0;
68 w2 := -3712.0 / 14175.0;
69 w3 := 41984.0 / 14175.0;
70 w4 := -18160.0 / 14175.0;
71 --
72 -- Initialize running sums to zero.
73 --
74 flag := 0.0;
75 result := 0.0;
76 cor11 := 0.0;
77 errest := 0.0;
78 area := 0.0;
79 nofun := 0;
80 if a = b then RETURN;
81 --
82 -- *** Stage 2 *** Iniitalization for first interval
83 --
84 lev := 0;
85 nim := 1;
86 x0 := a;
87 x(16) := b;
88 qprev := 0.0;
89 f0 := fun(x0);
90 stone := (b - a)/16.0;
91 x(8) := (x0 + x(16)) / 2.0;
92 x(4) := (x0 + x(8)) / 2.0;
93 x(12) := (x(8) + x(16)) / 2.0;
94 x(2) := (x0 + x(4)) / 2.0;
95 x(6) := (x(4) + x(8)) / 2.0;
96 x(10) := (x(8) + x(12)) / 2.0;
97 x(14) := (x(12)+ x(16)) / 2.0;
98 for j in 2..16 by 2 repeat
99 f(j) := fun(x(j));

100 nofun := 9;
101 --
102 -- *** Stage 3 *** Central calculation
103 -- Requires qprev,x0,x1,...,x16,f0,f2,f4,...,f16.
104 -- Calculates x1,x3,...x15, f1,f3,...f15,qleft,qright,
105 -- qnow,qdiff,area.
106 --
107 @L30 x(1) := (x0 + x(2)) / 2.0;
108 f(1) := fun(x(1));
109 for j in 3..15 by 2 repeat {
110 x(j) := (x(j-1) + x(j+1)) / 2.0;
111 f(j) := fun(x(j));
112 }

234 · Sample programs

113 nofun := nofun + 8;
114 step := (x(16) - x0) / 16.0;
115 qleft := (w0*(f0+f(8)) + w1*(f(1)+f(7)) + w2*(f(2)+f(6)) +
116 w3*(f(3)+f(5)) + w4*f(4)) * step;
117 qright(lev+1) := (w0*(f(8) + f(16))+w1*(f(9)+f(15))+w2*(f(10)+
118 f(14)) + w3*(f(11)+f(13)) + w4*f(12)) * step;
119 qnow := qleft + qright(lev+1);
120 qdiff := qnow - qprev;
121 area := area + qdiff;
122 --
123 -- *** Stage 4 *** Interval convergence test
124 --
125 esterr := abs(qdiff) / 1023.0;
126 tolerr := max(abserr, relerr*abs(area)) * (step/stone);
127 if lev < levmin then goto L50;
128 if lev >=levmax then goto L62;
129 if nofun > nofin then goto L60;
130 if esterr <= tolerr then goto L70;
131 --
132 -- *** Stage 5 *** No convergence
133 -- Locate next interval
134 --
135 @L50 nim := 2*nim;
136 lev := lev + 1;
137 --
138 -- Store right hand elements for future use.
139 --
140 for i in 1..8 repeat {
141 fsave(i)(lev) := f(i+8);
142 xsave(i)(lev) := x(i+8);
143 }
144 --
145 -- Assemble left hand elements for immediate use.
146 --
147 qprev := qleft;
148 for i in 1..8 repeat {
149 j := -i;
150 f(2*j+18) := f(j+9);
151 x(2*j+18) := x(j+9);
152 }
153 goto L30;
154 --
155 -- *** Stage 6 *** Trouble section
156 -- Number of function values is about to exceed limit.
157 --
158 @L60 nofin := 2*nofin;
159 levmax := levout;
160 flag := flag + (b - x0)/(b - a);
161 goto L70;
162 --
163 -- Current level is levmax.
164 --
165 @L62 flag := flag + 1;
166 --
167 -- *** Stage 7 *** Interval converged
168 -- Add contributions into running sums.
169 --
170 @L70 result := result + qnow;
171 errest := errest + esterr;
172 cor11 := cor11 + qdiff / 1023.0;
173 --
174 -- Locate next interval.
175 --

21.15. Quanc8 · 235

176 @L72 if nim = 2*(nim quo 2) then goto L75;
177 nim := nim quo 2;
178 lev := lev - 1;
179 goto L72;
180
181 @L75 nim := nim + 1;
182 if lev <= 0 then goto L80;
183 --
184 -- Assemble elements required for the next interval.
185 --
186 qprev := qright(lev);
187 x0 := x(16);
188 f0 := f(16);
189 for i in 1..8 repeat {
190 f(2*i) := fsave(i)(lev);
191 x(2*i) := xsave(i)(lev);
192 }
193 goto L30;
194 --
195 -- *** Stage 8 *** Finalize and return
196 --
197 @L80 result := result + cor11;
198 --
199 -- Make sure errest not less than roundoff level.
200 --
201 if errest = 0.0 then RETURN;
202 @L82 temp := abs(result) + errest;
203 if temp ~= abs(result) then RETURN;
204 errest := 2.0 * errest;
205 goto L82;
206 }
207
208 -- Test with a well-known example: the result should be Pi.
209
210 import from R, I, TextWriter, Character, String;
211
212 f(x:R):R == 4.0/(x*x+1);
213
214 (result, errest, nofun, flag) := quanc8(f,0.0,1.0,0.00001,0.00001);
215
216 if zero? flag then {
217 stdout << "result = " << result << newline;
218 stdout << "error = " << errest << newline;
219 stdout << "(after " << nofun << " function evaluations)" << newline;
220 }
221 else
222 stdout << "error flag is " << flag << newline;

236 · Sample programs

PART V

Reference

CHAPTER 22

Formal syntax

22.1
Source

Aldor source is a collection of lines containing a textual representation
of a program.
Lines beginning with the character “#” are system commands and are
not part of the program text.

22.1.1
Source
inclusion

Source inclusion collects the source lines which make up a program. This
process is controlled by the following system commands:
• #include "file-name"
#reinclude "file-name"
These commands collect the lines from the named file. If a given
file has already been included, then subsequent include commands
for that file have no effect. A reinclude command always includes
the file, whether or not it has already been included.
The includer tries to find the file relative to the directory of the
current source file and then in a sequence of user-specified and
platform-specific directories.
• #assert identifier
#unassert identifier
These commands turn on or off named properties which may be
tested for conditional source inclusion.
• #if identifier
#elseif identifier
#else
#endif
These commands provide conditional source inclusion.

239

• #! text
#
Lines are ignored if they begin with “#!” or begin with “#” and
contain only white space.

22.1.2
Prepared
source

The following commands allow source to be prepared by another pro-
gram.
• #line line-number ["file-name"]

The next line is recorded as occurring at the given line number in
the named file. The first line of a file is line number 1. If the file
name is missing, then the current file name is used.
• #error text

An error is considered to have occurred at the position of the system
command line and the given text is used as the message.

22.1.3
Other system
commands

Other system commands control the environment:
• #pile
#endpile
These commands create a context in which indentation is signifi-
cant. Braces may be used to revert to a normal state where indenta-
tion has no meaning, and it is possible to nest “#pile”/“#endpile”
and “{”/“}” pairs. Closing “#endpile” lines at the end of the pro-
gram may be omitted.
• #library identifier "file-name"

This links an entry in the file system to an identifier in the source
program. The identifier is treated as a defined constant with a
domain value in the file scope. A specified sequence of directories
is searched for the named library file. See “#libraryDir”.
• #includeDir "directory-name"
#libraryDir "directory-name"
The given directory is prepended to a sequence of directories to be
searched for include files or libraries, respectively. The sequences
are initialised to platform-specific sets, which may be augmented
by environment variables or command line arguments.
• #int options

This command controls the behaviour of the compiler when used
interactively. See Section 18.2 for a complete description of avail-
able options.

• #quit
The quit command causes the language processor to abandon the
program. If Aldor is running in interactive mode (“-g loop”), then
this command causes the termination of the interactive session.

240 · Formal syntax

22.2
Lexical structure

22.2.1
Characters

The standard Aldor character set contains the following 97 characters:
• the blank, tab and newline characters
• the Roman letters: a-z A-Z
• the digits: 0-9
• and the following special characters:

(left parenthesis) right parenthesis
[left bracket] right bracket
{ left brace } right brace
< less than > greater than
, comma . period
; semicolon : colon
? question mark ! exclamation mark
= equals _ underscore
+ plus - minus (hypen)
& ampersand * asterisk
/ slash \ back-slash
’ apostrophe (quote) ‘ grave (back-quote)
" double quote | vertical bar
^ circumflex ~ tilde
@ commercial at # sharp
$ dollar % percent

Other characters may appear in source programs, but only in comments
and string-style literals. Blank, tab and newline are called white space
characters. All the special characters except quote, grave and ampersand
are required for use in tokens. Grave and ampersand are reserved for
future use.

22.2.2
The escape
character

Underscore is used as an “escape” character, which alters the meaning
of the following text. The nature of the change depends on the context
in which the underscore appears.
An escaped underscore is not an escape character.
An escape character followed by one or more white space characters
causes the white space to be ignored. The remainder of this section
assumes that escaped white space has been removed from the source.

22.1. Source · 241

22.2.3
Tokens

The sequence of source characters is partitioned into tokens. The longest
possible match is always used.
The tokens are classified as follows:
• the following language-defined keywords:
add and always assert break
but catch default define delay
do else except export extend
fix for fluid free from
generate goto has if import
in inline is isnt iterate
let local macro never not
of or pretend ref repeat
return rule select then throw
to try where while with
yield

. , ; : :: :* $ @
| => +-> := == ==> ’
[] { } ()
The characters in a keyword cannot be escaped. That is, if a char-
acter is escaped, the token is not treated as a keyword.
• the following are not defined by the language but are reserved words

for future use:
delay fix is isnt let rule

(| |) [| |] {| |} ‘ & ||
• the following set of definable operators:
by case mod quo rem

+ - +- ~ ^
* ** .. = ~= ^=
/ \ /\ \/ < > <= >= << >> <- ->
The characters in an operator cannot be escaped.
• identifiers:
0
1
[%a-zA-Z][%?!a-zA-Z0-9]*
Any non-white space standard character may be included in an
identifer by escaping it. Thus “a”, “_*”, “a_*” and “_if” are all
identifiers. The escape character is not part of the identifier so
“ab” “_a_b” represent the same identifier. Identifiers are the only
tokens for which the leading character may be escaped.
• string-style literals:
‘"’[^"]*‘"’
An underscore or double quote may be included in a string-style
literal by escaping it.

242 · Formal syntax

• integer-style literals:
[2-9]
[0-9][0-9]+
[0-9]+‘r’[0-9A-Z]+
Escape characters are ignored in integer-style literals and so may
be used to group digits.
• floating point-style literals:
[0-9]*‘.’[0-9]+{[eE]{[+-]}[0-9]+}
[0-9]+‘.’[0-9]*{[eE]{[+-]}[0-9]+}
[0-9]+[eE]{[+-]}[0-9]+
[0-9]+‘r’[0-9A-Z]*‘.’[0-9A-Z]+{e{[+-]}[0-9]+}
[0-9]+‘r’[0-9A-Z]+‘.’[0-9A-Z]*{e{[+-]}[0-9]+}
[0-9]+‘r’[0-9A-Z]+‘e’{[+-]}[0-9]+
Escape characters are ignored in floating point-style literals and so
may be used to group digits.
Certain lexical contexts restrict the form of floats allowed. This
distinguishes cases such as sin 1.2 vs m.1.2. A floating point
literal may not

– begin with “.”, unless the preceding token is a keyword other
than “)”, “|)”, “]” or “}”,

– contain “.”, if the preceding token is “.”,
– end with “.”, if the following character is “.”.

• comments:
The two characters “--” and all characters up to the end of the line.
Underscores are not treated as escape characters in comments.
• documentation:

The two characters “++” and all characters up to the end of the line.
Underscores are not treated as escape characters in documentation.
• leading white space:

a sequence of blanks or tabs at the beginning of a line.
• embedded white space:

a sequence of blanks or tabs not at the beginning of a line.
• newline:

a newline character.
• layout markers:

SETTAB BACKSET BACKTAB
These do not appear in a source program but may be used to
represent a linearized from of the token sequence.

Comments and embedded white space are always ignored, except as used
to separate tokens. For example, “abc” is taken as one token but “a b c”
is taken as three.

22.1. Source · 243

22.3
Layout

Normally page layout is not significant in an Aldor program. Within
a “#pile”/“#endpile” pair, however, indendation and newlines have
meaning, and are used to group collections of lines. Source within such
a pair is in a piling context.
Indentation sensitivity may be turned off by enclosing source in a “{”/“}”
pair. Within braces all white space — leading, embedded, and new-
lines — is ignored. This is a non-piling context. Piling and non-piling
contexts may be nested.
The layout of a program in a piling context is understood by converting
leading white space and newlines to special markers which are part of
the language syntax.
This conversion follows the linearization rules:
• Blank lines are ignored.
• Consecutive lines indented the same ammount form a pile.
• The pile is enclosed in a SETTAB-BACKTAB pair if

– the pile has more than one line, or
– the pile has only one line and the last token of the line before

the pile is “then”, “else”, “with” or “add”.
• The pile lines are joined to form a single line. A BACKSET inserted

between adjacent pair of lines, unless
– the first contains only comments or documentation, or
– the first ends with “(”, “[”, “{” or “,”, or
– the second begins with “in”, “then”, “else”, “)”, “]” or “}”.

• A line is joined to the previous line if it is indented with respect to
it, forming a new single line.

These rules are applied from the most indented lines back out to the least
indented lines.

244 · Formal syntax

22.4
Grammar

This section presents the grammar used by the Aldor compiler. After ex-
panding parameterized rules, this grammar is conflict-free and LALR(1).

Declarative
expressions

Goal : CurlyContents(Labeled)
Expression : enlist1a(Labeled , “;”)
Labeled : Comma | Declaration | “@” Atom [Labeled]
Declaration:

“macro” Sig
| “extend” Sig
| “local” Sig
| “free” Sig
| “fluid” Sig
| “default” Sig
| “define” Sig
| “fix” Sig
| “inline” [Sig] [FromPart]
| “import” [Sig] [FromPart]
| “export” [Sig] | “export” [Sig] ToPart | “export” [Sig] FromPart

ToPart : “to” Infixed
FromPart : “from” enlist1(Infixed , “,”)
Sig : DeclBinding | Block
DeclPart : “:” Type | “:*” Type
Comma : enlist1(CommaItem, “,”)
CommaItem :

Binding(AnyStatement)
| Binding(AnyStatement) “where” CommaItem

DeclBinding : BindingR(InfixedExprsDecl , AnyStatement)
InfixedExprsDecl : InfixedExprs | InfixedExprs DeclPart
InfixedExprs : enlist1(InfixedExpr , “,”)
Binding(E) : BindingL(Infixed , E)
BindingL(R, L):

L
| R “:=” BindingL(R, L) | R “==” BindingL(R, L)
| R “==>” BindingL(R, L) | R “+->” BindingL(R, L)

BindingR(R, L):
R

22.4. Grammar · 245

| R “:=” Binding(L) | R “==” Binding(L)
| R “==>” Binding(L) | R “+->” Binding(L)

Control flow AnyStatement :
“if” CommaItem “then” Binding(AnyStatement)
| Flow(AnyStatement)

BalStatement : Flow(BalStatement)
Flow(X):

Collection
| “if” CommaItem “then” Binding(BalStatement) “else” Binding(X)
| Collection “=>” Binding(X)
| Iterators “repeat” Binding(X)
| “repeat” Binding(X)
| “try” Binding(AnyStatement) “but” [Cases] AlwaysPart(X)
| “select” Binding(AnyStatement) “in” Cases
| “do” Binding(X)
| “delay” Binding(X)
| “generate” GenBound Binding(X)
| “assert” Binding(X)
| “iterate” [Name]
| “break” [Name]
| “return” [Collection]
| “yield” Binding(X)
| “except” Binding(X)
| “goto” Id
| “never”

GenBound : Nothing | “to” CommaItem “of”
Cases : Binding(Collection)
AlwaysPart(X) : “always” Binding(X) | Nothing
Collection : Infixed | Infixed Iterators
Iterators : Iterators1
Iterators1 : Iterator | Iterators1 Iterator
Iterator : “for” ForLhs “in” Infixed [SuchthatPart] | “while” Infixed
ForLhs : Infixed | “free” Infixed | “local” Infixed | “fluid” Infixed
SuchthatPart : “|” Infixed

Infixed expressions Infixed : InfixedExpr | InfixedExpr DeclPart | Block
InfixedExpr : E11(Op) | E3
E3 : E4 | E3 “and” E4 | E3 “or” E4 | E3 LatticeOp E4
E4 : E5 | E4 “has” E5 | E4 RelationOp E5 | RelationOp E5
E5 : E6 | E5 SegOp | E5 SegOp E6

246 · Formal syntax

E6 : E7 | E6 PlusOp E7 | PlusOp E7
E7 : E8 | E7 QuotientOp E8
E8 : E9 | E8 TimesOp E9
E9 : E11(E12) | E11(E12) PowerOp E9
E11(X):

X | E11(X) “::” E12 | E11(X) “@” E12 | E11(X) “pretend” E12
Type : E11(E12)
E12 : E13 | E13 ArrowOp E12
E13 : E14 | E14 “$” QualTail
QualTail : LeftJuxtaposed | LeftJuxtaposed “$” QualTail
OpQualTail : Molecule | Molecule “$” OpQualTail
E14 :

E15 | E14 “except” E15
| [E14] “with” DeclMolecule | [E14] “add” DeclMolecule

E15 : Application
Infixed operators Op:

ArrowOp | LatticeOp | RelationOp | SegOp
| PlusOp | QuotientOp | TimesOp | PowerOp

NakedOp:
ArrowTok | LatticeTok | RelationTok | SegTok
| PlusTok | QuotientTok | TimesTok | PowerTok

ArrowOp: QualOp(ArrowTok)
LatticeOp: QualOp(LatticeTok)
RelationOp: QualOp(RelationTok)
SegOp: QualOp(SegTok)
PlusOp: QualOp(PlusTok)
QuotientOp: QualOp(QuotientTok)
TimesOp: QualOp(TimesTok)
PowerOp: QualOp(PowerTok)
ArrowTok : “->” | “<-”
LatticeTok : “\/” | “/\”
RelationTok :

“=” | “~=”| “^=” | “>=” | “>” | “>>” | “<=” | “<” | “<<” |
“is” | “isnt” | “case”

SegTok : “..” | “by”
PlusTok : “+” | “-” | “+-”
QuotientTok : “mod” | “quo” | “rem”

22.4. Grammar · 247

TimesTok : “*” | “/” | “\”
PowerTok : “**” | “^”

Juxtaposed
expressions

The expressions “a b”, “a.b”, and “a(b)” have the same semantics,
but different grouping. The following rules provide desired precedence.
Juxtaposition “a b” is looser than “.” and “a(b)”, and associates the
opposite way:

A B C D as (.(.(.)))
f(a).2(b)(c).x.y.(d).(e) as (((.).).)

This allows both the nested function application “sin cos x” and the
data access “T.x.first.tag” to be written naturally.
Application : RightJuxtaposed
RightJuxtaposed : Jright(Molecule)
LeftJuxtaposed : Jleft(Molecule)
Jright(H) : Jleft(H) | Jleft(H) Jright(Atom) | “not” Jright(Atom)
Jleft(H) :

H | “not” BlockEnclosure | Jleft(H) BlockEnclosure
| Jleft(H) “.” BlockMolecule

Primary
expressions

Molecule : Atom | Enclosure
Enclosure : Parened | Bracketed | QuotedIds
DeclMolecule : [Application] | Block
BlockMolecule : Atom | Enclosure | Block
BlockEnclosure : Enclosure | Block
Block : Piled(Expression) | Curly(Labeled)
Parened : “{” “}” | “{” Expression “}”
Bracketed : “[” “]” | “[” Expression “]”
QuotedIds : “’” “’” | “’” Names “’”
Names : enlist1(Name, “,”)

Terminals Atom : Id | Literal
Name : Id | NakedOp
Id : TK Id | TK Blank | “#” | “~”
Literal : TK Int | TK Float | TK String

Meta-rules Nothing :
QualOp(op) : op | op “$” OpQualTail
[E] : Nothing | E

248 · Formal syntax

Documentation Doc(E) : PreDocument E PostDocument
PreDocument : PreDocumentList
PostDocument : PostDocumentList
PreDocumentList : Nothing | TK PreDoc PreDocumentList
PostDocumentList : Nothing | TK PostDoc PostDocumentList

Separated lists The rule enlist1 provides lists with separators between elements, e.g.
“x , y, z”.
enlist1(E, Sep) : E | enlist1(E, Sep) Sep E
The rule enlist1a provides lists within which separators may be repeated,
e.g. “x ; ; y ; z”. Any number of separators may follow the last
element.
enlist1a(E, Sep) : E | enlist1a(E, Sep) Sep E | enlist1a(E, Sep) Sep

Blocks Piled(E) : KW SetTab PileContents(E) KW BackTab
Curly(E) : “{” CurlyContents(E) “}”
PileContents(E):

Doc(E)
| PileContents(E) KW BackSet Doc(E)
| error KW BackSet Doc(E)

CurlyContents(E) : CurlyContentsList(E)
CurlyContentsList(E) : CurlyContent1(E)
| CurlyContent1(E) CurlyContentB(E)

CurlyContent1(E) : Nothing | CurlyContent1(E) CurlyContentA(E)
CurlyContentA(E):

CurlyContentB(E) “;” PostDocument
| error “;” PostDocument

CurlyContentB(E) : PreDocument E PostDocument

22.4. Grammar · 249

CHAPTER 23

Command line options

The aldor command has the following general form:
aldor

options

file1 file2 ...

This compiles the files one after the other, each in a fresh environment.
Depending on the particular command line options given by the user,
the files resulting from the compilations may be combined or run.
The options are case-insensitive so “-G INTERP” is treated the same way
as “-g interp”.
If the environment variable “ALDORARGS” is defined, its contents are han-
dled as options before the ones on the command line.

23.1
File types

Files with the following type extensions are accepted on the command
line:
.as Aldor source. If a file name has no type extension, then

it is treated as if it were a “.as” file.

.ai Included Aldor source. This is a file with all “#include”
and “#if” statements processed. This sort of file is pro-
duced by running the compiler with a “-Fai” option.

.ap Parsed Aldor source. This is a file with the program in
an S-expression syntax. This is the easiest way to have
the Aldor compiler process programs generated by a Lisp
program. This sort of file is produced by running the
compiler with a “-Fap” option.

251

.fm Foam source. “Foam” is an acronym for “First Order
Abstract Machine”. The Aldor compiler produces Foam
as its intermediate code. An “fm” file contains Foam code
in S-expression syntax. This sort of file is produced by
running the compiler with a “-Ffm” option.

.ao Machine-independent object file. This is the result of
compiling an Aldor source file. It contains type infor-
mation, documentation, Foam code, symbol table infor-
mation, and so on. Characters are internally represented
in ASCII form, and floating point numbers are repre-
sented in a transportable format guaranteed not to loose
significance or exponent range on any platform.

.al Archive of machine-independent object files. This is
treated as a homogeneous aggregated library by the com-
piler. The file is laid out as a Unix-style archive on
all platforms. Thus both “.ao” and “.al” files may be
moved from machine to machine.

obj Object file. This is a platform-specific object file. These
are named in the usual way for the platform. For ex-
ample on Unix these files have extension “.o”, while on
DOS they have extension “.obj” and on CMS they have
extension “TEXT”.

arch Archive of object files. The name, contents, and format
of these archives is determined by the platform. For ex-
ample on Unix this would be a “.a” file containing “.o”
files.

23.2
General
options

-V Run verbosely, giving compilation information.
-D id Add global assertion as “#assert id”.
-U id Remove global assertion as “#unassert id”.
-A fn Read command line options from response file fn.

-K n Compile only the first n files (0-9).

-- Treat remaining arguments as input files.
-H ... Help.
-B dir Use dir as the base directory for Aldor system files.
-I dir Search dir for additional include files.
-Y dir Search dir for additional libraries.
-R dir Put the resulting files in directory dir .

252 · Command line options

-L ... Use the given library.
-F ... Indicate which output files are to be generated.
-E fn Specify the main entry point.
-G Run the program.
-O Standard optimisations.
-Q ... Select code optimisations.
-Z ... Debugging and profiling options.
-C ... Control C generation.
-S ... Control Lisp generation.
-M Control compiler messages.
-W Developer options.

23.3
Help
options

-H elp Brief, general help.
-H all Help about all options.
-H files Help about input file types.
-H options Help about summary of options.
-H [A|args] Help about argument gathering options.
-H [H|help] Help about help options.
-H dir Help about directory and library options.
-H [F|fout] Help about output file options.
-H [G|go] Help about execution options.
-H [O|Q|optimise] Help about optimisation options.
-H [Z|debug] Help about debugging options.
-H C Help about C code generation options.
-H [S|lisp] Help about Lisp code generation options.
-H [M|message] Help about message options.
-H [W|dev] Help about developer options.

23.3. Help options · 253

23.4
Argument
gathering
options

-A fn Read command line options from response file fn.

-K n Use only the first n files (0-9). The remaining arguments
are given to the Aldor program, if run with “-G”.

-- Treat remaining arguments as input files, even if they
begin with “-”. If the environment variable “ALDORARGS”
is defined, its contents are handled as options before the
command line.

23.5
Directories
and
libraries
options

-I dir Search dir for include files. The environment variable
“INCPATH” provides default locations.

-Y dir Search dir for additional libraries. The environment vari-
able “LIBPATH” provides default locations.

-R dir Put the resulting files in directory dir . The default is the
current directory.

-B dir Use dir as the base directory for Aldor system files. If
the “-B” option is omitted, then the base directory must
be given by the environment variable “ALDORROOT”.

-L fn Use the library given by file name fn. An alphanumeric
fn is a short form for “libfn.a”.

-L id=fn Same as “-L fn”, but the source name id is associated
with the library.

23.6
Generated
file options

The “-F” option indicates which output files are to be generated. Options
marked “(*)” cause one file of the given type to be generated for each
input file, whilst those marked “(1)” cause one file to be generated for
the entire compilation.

-F ai (*) Source after all #include statements have been pro-
cessed (from “.as”)

-F ax (*) Macro-expanded parse tree (from “.as”)

-F asy (*) Symbol information

-F ao (*) Machine-independent object file

-F fm (*) Foam code

-F lsp (*) Lisp code

-F c (*) C code

-F o (*) Object file

254 · Command line options

-F x (1) Executable file

-F
aldormain

(1) Generate “aldormain.c” containing function “main”.

If no “-F” or “-G” option is given, then “-Fao” is assumed.
If the parameter fn is given, it is used as the name of the corresponding
output file.
The compiler will not overwrite a C or Lisp file it did not generate.

23.7
Execution
options

-G run Compile the program to machine code, and then run
it. The executable file is removed afterwards unless the
“-Fx” option is present.

-G interp Translate the program to Foam code, and then run it in
interpreted mode. The “.ao” file is removed afterwards
unless the “-Fao” option is present.

-G loop Run interactively, interpreting each expression typed by
the user. With this option, the file “aldorinit.as” is
used for initialisation.

-E fn Use the input file “fn.*” as the main entry point. The
default is the first file. “-E” is useful only with “-Fx”,
“-Grun” or “-Ginterp”.

23.8
Optimisation options

Combinations can be used, e.g. “-OQno-cc” or “-Qno-all -Qcc”. The
default is “-Qcfold -Qdeadvar -Qpeep”. The option “-Qcc” may ex-
clude “-[gp]” on some platforms.
-O Optimise. This is equivalent to “-Q2”.

-Q n Select a level of code optimisation. (default is
“-Q1”).

-Q opt Turn on an optimisation opt from the list below.
-Q no-opt Turn off an optimisation opt from the list below.

Q0 Q1 Q2 Q3

-Q all All supported
optimisations.

X

23.7. Execution options · 255

-Q inline Allow open coding
of functions.

X X

-Q inline-all Allow open coding
of any functions.

X

-Q inline-limit=n Set maximum
acceptable increase
in code size from
inlining to n.

1.0 1.0 5.0 6.0

-Q cfold Evaluate non
floating point
constants at
compile time.

X X X

-Q ffold Evaluate floating
point constants at
compile time.

X X

-Q hfold Determine, where
possible, the run
time hash code
which domains will
have, reducing the
number of domain
instantiations and
speeding up
cross-file look-ups.

X X X

-Q peep Local “peep-hole”
optimisations.

X X X

-Q deadvar Eliminate unused
variables and
values.

X X X

-Q emerge Combine lexical
levels and records.

X X

-Q cprop Copy propagation. X X

-Q cse Common
sub-expression
elimination.

X X

Q0 Q1 Q2 Q3

-Q flow Simplify computed
tests and jumps.

X X

-Q cast Reduce the
number of casts.

X X

256 · Command line options

-Q cc Use the C
compiler’s
optimiser.

X X

Combinations can be used, e.g. “-Q3 -Qno-ffold”. The option “-Qcc”
may exclude “-Z” on some platforms.

23.9
Debug
options

-Z db Generate debugging information in object files.
-Z prof Generate profiling code in object files.

23.10
C code
generation
options

Control the behaviour of “-F c”, the option for generating C code.
-C standard Generate ANSI/ISO standard C (the default).

-C old Generate old (Kernighan & Ritchie) C.
The options “-Cstandard” and “-Cold” are mu-
tually exclusive.

-C comp=name Use name instead of the default C compiler
driver unicl. Use “-v” to see how the driver
is invoked.

-C link=name Use name instead of the default linker driver
unicl. Use “-v” to see how the driver is invoked.

-C cc=name Use name instead of the default C compiler and
linker driver unicl. Without this option, the
environment variable “CC” is tried. Use “-v” to
see how the driver is invoked.

-C go=name Use name to run the output of the linker. With-
out “-Cgo=”, the environment variable “CGO” is
tried. Use “-v” to see how the driver is invoked.
Most implementations don’t need this.

-C args=opts Pass opts as options to the C compiler and linker.
Use “-v” to see how the driver is invoked.

-C smax=n Attempt to put no more than n statements in
each file, if necessary by splitting the generated
file into: “name.h”, “name.c”, “name001.c”,
“name002.c”, etc. Using “-C smax=0” turns off
file splitting. (default: “smax=2000”)

-C idlen=n Set the maximum length of C identifiers to be n.
Using “-C idlen=0” turns off identifier trunca-
tion. (default: “idlen=32”)

23.9. Debug options · 257

-C [no-]idhash (Do not) use hash codes in global C identifiers.
(default: “idhash”)

-C [no-]lines Preserve Aldor source line numbers in generated
C. (default: no-lines)

-C sys=name Pass the option “-Wsys=name” to the C compiler
and linker. This option is interpreted by unicl
to select a group of options defined in its configu-
ration file “aldor.conf”. It also prepends to the
list of library directories a modified list in case
there is a special implementation for the partic-
ular name. This is of great help when making
libraries for specific flavours of CPU.

-C runtime=id1,.. Select a list of libraries “libid1.a”, “libid2.a”
etc. that implement the runtime system. Default
is “foam”.

-C fortran Pass “-Wfortran” to link driver unicl which en-
ables fortran options such as fortran runtime li-
braries.

-C lib=name Link with the library “libname.a”

23.11
Lisp code
generation
options

Control the behaviour of “-F lsp”.
-S common Produce Common Lisp code (the default).

-S standard Produce Standard Lisp code.

-S scheme Produce Scheme code.
The options “-Scommon”, “-Sstandard” and
“-Sscheme” are mutually exclusive.

-S ftype=ft Use ft as the file extension for the generated lisp
file (default: “-Sftype=lsp”).

23.12
Message
options

-M emax=n Stop after n error messages. (default: 10)

-M db=fn Use fn as the message database. (default: no-db)

-M msgname Turn on warning or remark named msgname.
Use “-Mname” (described below) to find out the
names of messages.

258 · Command line options

-M no-msgname Turn off warning or remark named msgname.

-M n Control how much detail is given. (default:
“-M2”)

-M no-opt Turn of “-M opt”.

M0 M1 M2 M3

-M warnings Display warnings. N Y Y Y

-M source Display the
program lines for
messages.

N N Y Y

-M details Display details. N N Y Y

-M notes Display cross
reference notes.

N N Y Y

-M remarks Display remarks. N N N Y

-M sort Sort messages by
source position.

Y Y Y Y

-M mactext Point to macro
text, rather than
use.

Y Y Y Y

-M abbrev Abbreviate types
in messages.

Y Y Y Y

-M human Human-oriented
format.

Y Y Y Y

-M name Show the name of
each message as
well as the
message itself.

N N N N

-M antiques Display warnings
for old-style code.

N N N N

-M preview Display messages
as they occur.

N N N N

-M inspect Use interactive
inspector for
errors.

N N N N

23.12. Message options · 259

23.13
Developer
options

Developer options (subject to change):
-W check Turn on internal safety checks.
-W runtime Produce code suitable for the runtime system.

-W nhash Assume all exported types have constant hash-
codes.

-W loops Always inline generators when possible.

-W missing-ok Do not stop the compiler if an export is missing
in a domain.

-W audit Set maximum Foam auditing level.

-W trap Trap failure exits (for debugging Aldor).

-W gc Garbage collect as needed (if gc is available).

-W gcfile Garbage collect after each file (if gc is available).

-W sexpr Run a read-print loop.
-W seval Run a read-eval-print loop.

-W test=name Run compiler self-test name. Use the option “-W
test+show” to see a list of self-tests.

-W D+name Turn on debug hook name. Use “-W D+show” to
see a list of debug hooks.

-W D-name Turn off debug hook name. Use “-W D+show” to
see a list of debug hooks.

-W Tapdrgst0+ph Phase tracing: Several phases can be given as
“ph1+ph2+ph3” or “all”. Several options can
be given at once, e.g. “-WTags+all”. Compile
a file with “-v” to see the phase abbreviations.
The remaining options give more details about
the trace code letters.

-WTa+ph Announce entry to ph.
-WTp+ph Pretty print result of ph.
-WTd+ph Print debug information for ph.
-WTr+ph Show result of ph.
-WTg+ph Garbage collect after ph.
-WTs+ph Storage audit after ph.
-WTt+ph Terminate after ph.
-WT0+ph Ignore earlier “-WT” option for ph.

260 · Command line options

23.14
Environment variables

Sometimes there are certain aspects of the compiler’s behaviour which
you may wish to change for most of your compilations.
Most operating systems have some notion of environment variables and
the Aldor compiler checks a number of these to guide its actions. None
of these needs to be defined, but if they are the Aldor compiler will use
them.
ALDORROOT This gives a directory under which the compiler

will find its own include files, libraries, etc.

ALDORARGS This provides options to the compiler which are
treated before those appearing on the command
line.

INCPATH This gives the compiler additional places to
search for include files. The syntax is accord-
ing to the operating system’s conventions. For
example, on Unix a suitable initialisation could
be:
INCPATH=/home/jane/include:.:/usr/local/include

This has the same effect as using the command
line options
-I/home/jane/include -I. -I/usr/local/include

LIBPATH This gives the compiler additional places to
search for libraries.

CC This gives the Aldor compiler the name of a C
compiler which it should call to generate and link
object code. The default is unicl – a program
provided in the Aldor distribution to convert C
compile command lines to the native system syn-
tax.

CGO This gives the Aldor compiler the name of a
loader which it should call to run an executable
program it has generated. On most platforms no
explicit loader is needed.
Sometimes you will wish to specify “CC” and
“CGO” together. For example on DOS using the
“djgpp” port of GCC, a useful combination is
set CC=gcc
set CGO=go32

23.14. Environment variables · 261

CHAPTER 24

The unicl driver

The unicl program, which is supplied in the distribution and can be
found in $ALDORROOT/bin, is a configurable driver for the C compiler and
linker. It is used whenever the aldor options -Fo or -Fx are specified.
The aldor option -v can be used to show how unicl is invoked and
how it calls the underlying C compiler. Invoking unicl on its own will
display some useful information about the options it understands. These
include some options commonly found in C compilers such as
-O : Optimize.
-c : Compile only, do not link.
-g : Include debug information in generated objects.

-o name : Name the executable.
-p : Include profiling code.

-D def : Define a macro.
-U undef : Undefine a macro.

-I dir : Specify directory for included files.
-L dir : Specify directory for linked libraries.
-l lib : Specify libraries to link.

Additionally, unicl understands the following options

-Wh : Show help information.
-Wv : Be verbose.

-Wv=n : Set verbosity level (currently 0-4).
-Wn : Do not execute generated commands.

An extra set of options act as flags for certain non-default unicl be-
haviour. These are

-Wstdc : Use an ANSI C compiler.
This is passed from aldor unless aldor -Cold is specified.

263

-Wshared : Produce a shared object.
-Wfortran : Link in FORTRAN code.

This is passed from aldor when aldor option -Cfortran is speci-
fied.

-Wfnonstd : Enable non-standard (non-IEEE) floating point.
This is passed from aldor when aldor -Q4 or -Qcc-fnonstd is
specified.

The unicl program will also look for options in the UNICL environment
variable and will prepend them to the command line options if the vari-
able exists.
The unicl program itself does not have any knowledge about the un-
derlying C compiler for each platform. All the necessary information is
read by unicl from an ASCII configuration file. By default, this file is
searched for in $ALDORROOT/include/aldor.conf but the

-Wconfig=file : Specify location of configuration file.
option can be used to select an alternative. The configuration file consists
of named sections introduced by an identifier enclosed in square brackets.
Each section consists of assignments of the form key=value. The options

-Wsys=name : Specify which section of the configuration file to use.
-Wv=2 : Show which section is being used.

set and show the section selected. When aldor calls unicl it automat-
ically 1 specifies the appropriate section of the configuration file. The
advantage of this method is that all the details for every implementation
of Aldor can be kept in one place. It also means that the compiler user
has complete control over the back end C compiler and linker. It is a
simple matter, for instance to introduce a new section with a modified
name, populate it with some variations on the original values and give
the aldor option -Csys=newname.
These are the meaningful keys in the configuration file.

• The name of the program to call for compiling and linking
cc-name : compiling only, non-ANSI C
link-name : linking, non-ANSI C
std-cc-name : compiling only, ANSI C
std-link-name : linking, ANSI C
• The flag to use when -g (debugging) is given
cc-debug : compiling only, non-ANSI C
link-debug : linking, non-ANSI C
std-cc-debug : compiling only, ANSI C

1Currently, it does this via the UNICL environment variable so you need to give the
aldor option -Cargs=-Wv=3 to see that. The unicl option -Wstdc is also passed that
way unless you specify aldor option -Cold.

264 · The unicl driver

std-link-debug : linking, ANSI C
• The flag to use when -p (profiling) is given
cc-profile : compiling only, non-ANSI C
link-profile : linking, non-ANSI C
std-cc-profile : compiling only, ANSI C
std-link-profile : linking, ANSI C
• The flags to use when -O (optimise) is given (without the option
-Wfnonstd)
cc-optimize : compiling only, non-ANSI C
link-optimize : linking, non-ANSI C
std-cc-optimize : compiling only, ANSI C
std-link-optimize : linking, ANSI C
• The flags to use when -O and -Wfnonstd (non-IEEE optimisation)

are given
cc-non-std-float : compiling only, non-ANSI C
link-non-std-float : linking, non-ANSI C
std-cc-non-std-float : compiling only, ANSI C
std-link-non-std-float : linking, ANSI C
• The flags to use in any case. These will appear before any specified

files.
cc-opts : compiling only, non-ANSI C
link-opts : linking, non-ANSI C
std-cc-opts : compiling only, ANSI C
std-link-opts : linking, ANSI C
• The flags to use in any case. These will appear at the end of the

command.
cc-post : compiling only, non-ANSI C
link-post : linking, non-ANSI C
std-cc-post : compiling only, ANSI C
std-link-post : linking, ANSI C
• The flags to use in any case. These will appear after filenames but

before any library specification only at the link step.
link-twixt : linking, non-ANSI C
std-link-twixt : linking, ANSI C
• The flags to use when linking libraries.
library : The flag for linking libraries (commonly -l).
library-sep : Do we need a space between the flag and the name

of the library (true/false).

265

lib-extra : A space delimited list of libraries to be linked.
Example: nsl socket.

libpath : The flag for specifying library directories (commonly -L).
libpath-sep : Do we need a space between the flag and the name

of the library directory (true/false).
expand-libs : Do we turn -llib options into complete file argu-

ments (true/false).
lib-ext : The file extension for libraries (commonly a).
lib-default-path : A space delimited list of the directories to be

searched for libraries.
Example: /usr/local/lib /usr/X11/lib.

• The flags to use when specifying include file directories.
include : The flag for specifying include file directories (commonly

-I).
include-sep : Do we need a space between the flag and the name

of the include file directories (true/false).
include-default-path : A space delimited list of directories to be

searched for include files.
Examples: /usr/local/include /usr/X11/include.

• The flags to use when defining or undefining macros.
define : The flag for defining a macro (commonly -D).
define-sep : Do we need a space between the flag and the name

of the macro (true/false).
undefine : The flag for undefining a macro (commonly -U).
undefine-sep : Do we need a space between the flag and the name

of the macro (true/false).
• The flag to use when specifying name of linked executable.
output-name : The flag for specifying the name of the executable

(commonly -o).
output-name-sep : Do we need a space between the flag and the

name (true/false).
• Miscellaneous keys
compile-only : The flag that specifies compilation only (commonly

-c).
debug-profile-ok : Can we specify debugging and profiling at the

same time (true/false).
debug-optimize-ok : Can we specify debugging and optimizing at

the same time (true/false).
fortran-libraries : A string which will be passed verbatim to

the linker when -Wfortran is specified (see Section 20.5). For
example: -lfort -lf77

• Keys that aldor looks for

266 · The unicl driver

generate-stdc : Do we generate ANSI C (true/false).
fortran-cmplx-fns : The scheme to use when dealing with FOR-

TRAN functions which return complex numbers. The pos-
sible values are string, return-void, return-struct, and
disallowed. See Section 20.5.

fortran-naming-scheme : Which scheme to use when resolving ex-
ternal FORTRAN names. The possible values are underscore
no-underscore underscore-bug. See Section 20.5.

The special key inherit takes as value a section name and directs unicl
to look in the named section if a key is not found in the current one. The
special character $ prepended to a key name stands for the value of that
key. You can introduce your own keys for convenience and refer to them
using $. The following conditions are provided

compile the program is compiling C code (one of ‘link’ and ‘compile’ will
be true)

link the program is linking its arguments to an executable
stdc -Wstdc was specified

shared -Wshared was specified
optimize -O was specified

nonstdfloat -Wnonstdfloat was specified
stdfloat -Wnonstdfloat was not specified
profile -p was specified.

You can use the conditions when specifying values with this form:

{\tt \$?condition w1 w2 w3 : w4 ;}

meaning ’If condition is true then w1 w2 w3 else w4’. Conditional forms
can be nested.

267

CHAPTER 25

Compiler messages

This chapter lists the messages produced by the Aldor compiler. Each
message has a name and an associated text. For example, one message
has the name “ALDOR E TinOpMeans” and the associated text “Operator
has %d possible types.”

The name of this message has four parts:

ALDOR indicates this message is for the Aldor compiler,
E indicates this is an error message,
Tin indicates the message arises in type inference,
OpMeans identifies the particular message.

A number of letters may occur in the place of “E” above. The letters
and their meanings are:

F fatal errors — compiler stops
E soft errors — compiler keeps going
W warnings
R remarks

H help
M interactive loop messages
N notes — cross references to other source lines
D details for another message
P punctuation

The name can be used to enable or disable the display of a specific
warning or a remark. See Section 16.7 on page 170 for details.
We show below the name and the text of most of the compiler messages.
The only messages we have omitted are those which give the command
line help:

269

ALDOR H HelpCmd ALDOR H HelpFileTypes
ALDOR H HelpOptionSummary ALDOR H HelpHelpOpt
ALDOR H HelpArgOpt ALDOR H HelpDirOpt
ALDOR H HelpFileOpt ALDOR H HelpGoOpt
ALDOR H HelpOptimOpt ALDOR H HelpDebugOpt
ALDOR H HelpCOpt ALDOR H HelpLispOpt
ALDOR H HelpMsgOpt ALDOR H HelpDevOpt
ALDOR H HelpMenuPointer

This information is given in chapter 23.
Within the text of the messages, items such as “%s” and “%d” have strings
and numbers substituted into them before the message is actually used.
For example, the message with the text “Operator has %d possible
types.” might appear as “Operator has 4 possible types.” when
it is actually displayed in a given context.
ALDOR E ExplicitMsg %s
ALDOR N ExplicitMsg %s
ALDOR N Here

ALDOR F CmdBadOption Improper use of ‘%s’ option. Type ‘%s -help’
for help.

ALDOR F CmdNoOption ‘%s’ is not an option. Type ‘%s -help’ for help.
ALDOR F CmdCantUseEntry Could not use file ‘%s’ as the main file.
ALDOR F CmdNoOutputDir The specified output directory does not exist.
ALDOR W CmdFunnyEntry Bogus main file name ‘%s’ ignored.

ALDOR W DisableNotKeyword Unable to enable or disable ‘%s’: not a
keyword.

ALDOR W FtnVarStringRet You cannot receive variable-length strings from
Fortran functions. Use FixedString() instead.

ALDOR W FtnNotFtnArg Unrecognised argument type for Fortran call.

ALDOR F MsgTooManyErrors Too many errors (use ‘-M emax=n’ or ‘-M
no-emax’ to change the limit).

ALDOR R MsgCountMessages This file had %d errors, %d warnings and %d
remarks.

ALDOR R MsgAdviseDetails Use ‘aldor -M<n>’ to get more or less detail.
ALDOR R MsgCondolences Sorry, your file did not compile.
ALDOR R MsgCongratulations Congratulations, your file compiled!!
ALDOR P MsgTagRemark (Remark)
ALDOR P MsgTagWarning (Warning)
ALDOR P MsgTagError (Error)
ALDOR P MsgTagFatal (Fatal Error)
ALDOR P MsgTagNote (Note %d)
ALDOR P MsgPreview (Message Preview)
ALDOR P MsgAfterMacEx (After Macro Expansion)
ALDOR P MsgExpandedExpr Expanded expression was:
ALDOR P MsgSposFileLine ”%s”, line %d:
ALDOR P MsgSposLineChar [L%d C%d]
ALDOR P MsgNote Note %d

270 · Compiler messages

ALDOR P MsgSeeNote (see %s)
ALDOR P MsgCfNote (cf. L%d C%d)
ALDOR P MsgCfFarNote (cf. ”%s” L%d C%d)
ALDOR P MsgConjunction and
ALDOR E InclBadUnassert Unassert: property unknown: ‘%s’.
ALDOR E InclIfEof End of file encountered in ‘#if’.
ALDOR E InclInfinite Circular include files: %s.
ALDOR E InclUnbalElse Unbalanced ‘#else’.
ALDOR E InclUnbalElseif Unbalanced ‘#elseif’.
ALDOR E InclUnbalEndif Unbalanced ‘#endif’.
ALDOR E SysCmdBad Improper use of ‘%s’ system command.
ALDOR W SysCmdUnknown Unknown system command.
ALDOR E ScanBadAftRad improper number (after radix specification).
ALDOR E ScanBadChar bad character in input.
ALDOR E ScanBadExpon improper number (no digits in exponent).
ALDOR E ScanBadRadix bad radix specification (2 <= radix <= 36).
ALDOR E ScanNoDigits improper number (no digits).
ALDOR E ScanOpenString string not closed.
ALDOR E NormMacDecl Macros must not be given return types.
ALDOR E NormMacBadBody Improper body in ‘macro’ statement.
ALDOR W NormNoId Couldn’t find identifier for documentation

ALDOR W NormFornForeign Foreign(Foreign) is deprecated: use Foreign
instead.

ALDOR W NormFornBuiltin Foreign(Builtin) is deprecated: use Builtin
instead.

ALDOR W NormNullForeign Foreign() is deprecated: use Foreign instead.
ALDOR E MacBadDefn Improper form for macro definition.

ALDOR E MacBadParam Improper macro parameter (should be an
identifier).

ALDOR E MacBadParamDecl Macro parameters must not have type
declarations.

ALDOR E MacBadArgc Macro used with incorrect number of
arguments.

ALDOR E MacBadArg Macro cannot match the given argument.
ALDOR E MacInfinite Circular macro expansion: %s.

ALDOR W MacHides Definition of macro ‘%s’ hides an outer
definition.

ALDOR W MacRedefined Macro ‘%s’ redefined in the same scope.
ALDOR F SyntaxOverflow Parser stack overflow (in state %d).
ALDOR E SyntaxError Syntax error.
ALDOR E SyntaxErrorDebug Syntax error (in state %d).
ALDOR E SyntaxErrorHuh %s.
ALDOR E SyntaxNoRecovery Cannot recover from earlier syntax errors.
ALDOR E SyntaxFullError Syntax error: %s
ALDOR E LinUnbalanced Unbalanced ‘%s’ – missing ‘%s’.
ALDOR W LinUnbalanced Unbalanced ‘%s’ – missing ‘%s’.
ALDOR F LoadNotAbSyn This is not an abstract syntax operator.
ALDOR F LoadNotFoam This is not a Foam operator.

271

ALDOR F LoadNotList Expecting a (parenthesized) list here.
ALDOR F LoadNotUnary Expecting exactly one argument.
ALDOR F LoadNotString Expecting a ”quoted” string here.
ALDOR F LoadNotSymbol Expecting a symbol here.
ALDOR F LoadNotInteger Expecting an integer.
ALDOR F LoadNotFloat Expecting a float.

ALDOR W CantUnKeywordRef Unable to consider this ‘ref’ as a non-keyword
(compiler limitation: try a simpler definition).

ALDOR E ChkBadAssign Incorrect left-hand side of an assignment.
ALDOR E ChkBadDeclare Improper form appearing within a declaration.

ALDOR E ChkBadDefine Incorrect left-hand side of a definition. Check
indentation of succeeding definitions, if any.

ALDOR W ChkBadDependent Bad dependent type detected (or compiler bug)

ALDOR E ChkBadFor Expecting an identifier or single declaration
after ‘for’.

ALDOR E ChkBadForm Improper form appearing in ‘%s’ statement.

ALDOR E ChkBadGoto A goto must have a label’s identifier as its
target.

ALDOR E ChkBadLabel A label must consist of a single identifier.
ALDOR E ChkBadMLambda Improper macro expansion.
ALDOR E ChkBadMacro Improper macro definition.

ALDOR E ChkBadParams Expecting a comma separated list of
parameters.

ALDOR E ChkBadParamsDups Improper duplicate use of parameter name.
ALDOR E ChkBadQualification Improper LHS in $-qualification.

ALDOR E ChkBadRecordOrUnion Duplicate selector/type pair within Record,
RawRecord or Union.

ALDOR E ChkMissingRetType Function return type must be specified.
ALDOR D ChkUseFromHint Maybe you want to use ‘import from ...’.
ALDOR E ChkSelectSeq ‘select <E> in’ must be followed by a sequence.
ALDOR E ChkSelectExits Unexpected ‘=>’ in select

ALDOR W FunnyJuxta Suspicious juxtaposition. Check for missing ‘;’.
Check indentation if you are using ‘#pile’.

ALDOR W FunnyColon Suspicious ‘:’. Do you mean ‘local’ or ‘default’?
ALDOR W FunnyEquals Suspicious ‘=’. Do you mean ‘==’ or ‘:=’ ?
ALDOR W FunnyEscape Escape character ignored. Do you mean ’ ’?

ALDOR W OldSyntaxAlways Deprecated syntax: use ‘finally’ instead of
‘always’

ALDOR W OldSyntaxCatch Deprecated syntax: use ‘catch’ instead of ‘but’

ALDOR W OldSyntaxThrow Deprecated syntax: use ‘throw’ instead of
‘except’

ALDOR W OldSyntaxUnknown Deprecated syntax

ALDOR E ScoAssAndDef Cannot both assign and define ‘%s’ in the same
scope.
Choose ‘==’, ‘:=’, or use as a ‘for’ variable.

ALDOR E ScoAssAndRef Cannot both define and reference ‘%s’ in the
same scope.
Declare it as a variable instead.

272 · Compiler messages

ALDOR E ScoAssTypeId ‘%s’ is used in a type, so must be constant, and
so cannot be assigned to.

ALDOR E ScoBadLexConst A local constant may not have the same name
as an outer variable or parameter.

ALDOR E ScoFluidShadow A fluid variable cannot shadow an outer
non-fluid binding.

ALDOR E ScoBadLoopAss Cannot explicitly assign a ‘for’ variable.

ALDOR E ScoBadParameter Improper form appearing in a parameter
context.

ALDOR E ScoBadTypeFree Free variable ‘%s’ is bound elsewhere with a
different type.

ALDOR E ScoDupDefine Constant ‘%s’ cannot be redefined.
ALDOR E ScoFreeAndLoc Cannot declare ‘%s’ both free and local.

ALDOR E ScoFreeConst A constant declared free in an inner scope
(‘%s’) cannot be defined in that scope.

ALDOR E ScoLateFreeLocal It is illegal to declare an identifier free or local
once it has already been used, defined or
assigned.

ALDOR E ScoLibrary Cannot assign to or redefine library or archive
constant ‘%s’.

ALDOR E ScoNoFree A built-in or foreign function cannot be
declared ‘free’ or ‘local’.

ALDOR E ScoNoParm A built-in or foreign function cannot have the
same signature as a parameter.

ALDOR E ScoNoSet A built-in or foreign function cannot be
assigned to or defined.

ALDOR E ScoNotBuiltin Unknown built-in.
ALDOR E ScoParmLocFree Parameters cannot be declared local or free.

ALDOR E ScoSameSig A built-in function cannot have the same
signature as a foreign function.

ALDOR E ScoParmType Parameter type (for %s) must be specified
explicitly or with default.

ALDOR E ScoVarOverload Variables cannot have different types in the
same scope.

ALDOR E ScoUnknownFree Cannot find scope in which free variable ‘%s’ is
bound.

ALDOR W ScoNotProtocol Unknown foreign interface protocol.

ALDOR W ScoBadLocal Implicit local ‘%s’ is a parameter, local or
explicit free in an outer scope. Add a ‘local’
declaration if this is what you intended.

ALDOR W ScoFunnyUse Identifier ‘%s’ has different declarations in the
same scope. Are all implicit and explicit
declarations compatible?

ALDOR W ScoBadUse Local ‘%s’ is used without being assigned or
defined.

ALDOR W ScoLocalNoUse Local ‘%s’ is not assigned, defined, or used.

ALDOR W ScoVarDefault ‘%s’ has a default type and a different explicit
type declaration.

ALDOR R ScoMeaning Introducing %s meaning for %s with type %s.

273

ALDOR E ScoEarlyUse Implementation restriction: you cannot use a
non-lazy constant outside an ‘add’ before it has
been defined. Perhaps you ought to define ‘%s’
sooner.

ALDOR E StabDupLabels Cannot use label ‘%s’ more than once in a
given scope.

ALDOR R StabImporting Importing %s.
ALDOR R StabImportingQual The import was restricted to: %s.
ALDOR W StabNotImporting Ignoring explicit import from %s.
ALDOR F LibOutOfDate The file ‘%s.ao’ is newer than ‘%s.ao’.

ALDOR F LibBadVersion Library format (obsolete version) in file ‘%s’.
Current library format version %d.%d.
Found library format version %d.%d.

ALDOR F LibExportNotFound Looking for ‘%s’ with code ‘%d’. Export not
found.

ALDOR E LibBadMagic Library format (bad magic number) in file ‘%s’.

ALDOR E LibBadNumSect Library format (bad number of sections) in file
‘%s’.

ALDOR E LibBadSectHdr Library format (bad section header) in file ‘%s’.
ALDOR E LibBadSectName Library format (bad section name) in file ‘%s’.
ALDOR E LibSectDup Library format (duplicate section) in file ‘%s’.
ALDOR E LibSectLimit Library format (too many sections) in file ‘%s’.
ALDOR E LibSectOffset Library format (offset out of range) in file ‘%s’.
ALDOR W LibRedefined Redefinition of library symbol ‘%s’.
ALDOR E TinNoMeaningForId No meaning for identifier ‘%s’.
ALDOR E TinNoMeaningForLit No meaning for %s-style literal ‘%s’.
ALDOR E TinBadDeclare Improper form appearing within a declaration.
ALDOR E TinIfMeans The ‘if’ expression has %d possible types.
ALDOR E TinAssMeans Assignment has %d meanings.
ALDOR E TinDefnMeans Definition has %d meanings.

ALDOR E TinCantSplitRHS This right hand side cannot be split for
multiple assignment.

ALDOR E TinAssignCreatesDepType The type of this variable includes a variable,
’%s’.
Consider using ’==’ instead of ’:=’

ALDOR E TinExprMeans Have determined %d possible types for the
expression.

ALDOR E TinNMeanings There are %d meanings for ‘%s’ in this context.

ALDOR E TinBadGoto A goto must have a label’s identifier as its
target.

ALDOR E TinOpMeans Operator has %d possible types.
ALDOR E TinWildExit The ‘=>’ is not inside a sequence.
ALDOR E TinWildReturn The ‘return’ is not inside a function.
ALDOR E TinWildYield The ‘yield’ is not inside a ‘generate’.
ALDOR E TinContext A value is needed but %s does not produce one.

ALDOR E TinContextAssert A value is needed but ‘assert’ does not produce
one.

ALDOR E TinContextDo A value is needed but ‘do’ does not produce
one.

274 · Compiler messages

ALDOR E TinContextExit A value is needed but ‘=>’ does not produce
one.

ALDOR E TinContextIf A value is needed but ‘if’ expression has no
‘else’.

ALDOR E TinContextRepeat A value is needed but ‘repeat’ does not produce
one.

ALDOR E TinContextSeq A value is needed but an empty sequence does
not produce one.

ALDOR E TinCantInferLhs The type of the assignment cannot be inferred.

ALDOR E TinNoGoodOp There are no suitable meanings for the operator
‘%s’.

ALDOR E TinNoGoodInterp There is no suitable interpretation for the
expression %s

ALDOR E TinFirstExitType The possible type for this %s is %s.
ALDOR E TinFirstExitTypes The possible types for this %s are:
ALDOR E TinTypeConstIntro The interpretation of the type expression
ALDOR X TinTypeConstFailed failed to satisfy the condition that

ALDOR E TinCantBeAnalyzed Cannot determine the meaning of this
expression because
the type of one of its subexpressions cannot yet
be completely analyzed.

ALDOR E TinEmbeddedSet Implicit set within a multi-assign is not yet
implemented.

ALDOR E TinMultiTry try expressions must yield a single value (will
be fixed later).

ALDOR E TinPackedNotSat Raw record type does not satisfy %s

ALDOR D TinNoGoodInterp There is no suitable interpretation for the
expression %s

ALDOR D TinNoMeaningForId No meaning for identifier ‘%s’.
ALDOR D TinSubexprMeans Subexpression ‘%s’:
ALDOR D TinPossTypesLhs The possible types of the left hand side are:
ALDOR D TinPossTypes The possible types were:
ALDOR D TinPossInterps The possible interpretations of ‘%s’ are:

ALDOR D TinPossTypesRhs The possible types of the right hand side (‘%s’)
are:

ALDOR D TinAlternativeMeanings The following could be suitable if imported:
ALDOR D TinOneMeaning Meaning %d: %s
ALDOR D TinContextType The context requires an expression of type %s.
ALDOR D TinMissingExports The domain is missing some exports.
ALDOR D TinMissingExport Missing %s: %s
ALDOR D TinRejectedTypes These possible types were rejected:

ALDOR X TinNoArgumentMatch rejected because argument %d did not match
‘%s’.

ALDOR X TinParameterMissing rejected because parameter %d (%s) is missing.
ALDOR X TinBadArgumentNumber rejected because it cannot take %d arguments.
ALDOR X TinBadFnType rejected because the context requires type ‘%s’.
ALDOR D TinRejectedType The rejected type is %s.

ALDOR D TinRejectedTypesForRhs These possible types for the right hand side
were rejected:

275

ALDOR D TinRejectedTypeForRhs The rejected type for the right hand side is %s.
ALDOR D TinShouldUseDoubleEq You should use %s==%s and not %s.
ALDOR D TinAvailableTypesForArg The available types for argument %d were:

ALDOR D TinArgNoMatchParTypes Argument %d of ‘%s’ did not match any
possible parameter type.

ALDOR D TinOperatorNoMatch Operator (argument %d of apply) did not
match any possible parameter type.

ALDOR D TinMoreMeanings There are %d meanings for the operator ‘%s’.

ALDOR D TinRetTypesCantContext No one possible return type satisfies the
context type.

ALDOR D TinExpectedType Expected type %s.
ALDOR D TinExpectedTypes Expected one of:
ALDOR D TinRejectedRetTypes These possible return types were rejected:

ALDOR D TinOtherDiffArgNum There are other meanings rejected due to
different number of arguments.

ALDOR D TinPossSelectorTypes Possible types for the selector ‘%s’ were:
ALDOR D TinPossRetTypeSetBang Possible return types for ‘set!’ expression were:

ALDOR D TinPossTypesForSetBang No ‘set!’ found for any of the possible types for
‘%s’:

ALDOR D TinSetBangBadArgNum There is no ‘set!’ definition with this number of
arguments.

ALDOR D TinOneImpMeaning %s: %s from %s
ALDOR D TinOneLexMeaning %s: %s, a local
ALDOR D TinOneLibMeaning %s: %s, a library
ALDOR D TinOneMeaning0 (...): %s

ALDOR D TinFirstExitCant This is not compatible with the types of the
other %ss.

ALDOR N TinOtherExitType Here the %s type is %s.
ALDOR N TinOtherExitTypes Here the %s types are:
ALDOR W TinNoValReturn The ‘return’ gives a value but none is expected.

ALDOR E TinReturnNoVal The ‘return’ gives no value where one is
expected.

ALDOR R TinInferring Inferring %s: %s.
ALDOR W TqNotBuiltin ‘%s: %s’ is not exported by Builtin.

ALDOR E GenImpNoRep Domains with implicit exports must define Rep
(as a constant not a macro)

ALDOR W GenDomFunNotConst Function returns a domain that might not be
constant (which may cause problems if it is
used in a dependent type).

ALDOR W GenCatFunNotConst Function returns a category that might not be
constant (which may cause problems if it is
used in a dependent type).

ALDOR W GenBadDefCycle Illegal recursive definition: %s

ALDOR W GenBadDefOrder Implementation restriction: the value of ‘%s’
depends on the value of %s. Perhaps you ought
to define ‘%s’ later?

ALDOR M FintBreakHandler Execution terminated: use #quit if you want to
quit.

276 · Compiler messages

ALDOR M FintBreakHandler0 Use ’#quit’ to quit Aldor.

ALDOR M FintYesOrNo
Please, answer y or n.

ALDOR M FintRedefined %s redefined.
ALDOR M FintOptionState %s is %s.
ALDOR M FintOptionValue %s is %d.

ALDOR M FintUnknownOpt Unrecognized option. Type:
#int %s
for help.

ALDOR M FintTimings Comp:
%d msec, Interp: %d msec

ALDOR M FintGbcStart Garbage collection...
ALDOR M FintGbcEnd done.

ALDOR M FintIntOptionsNoFile Cannot give files, such as ‘%s’, with ‘#int
options’

ALDOR M ShellSyntax The correct syntax is: #int %s
”<shell-command>”

ALDOR M CdSyntax The correct syntax is: #int %s <directory>

ALDOR M InvalidDir Invalid directory.

ALDOR M FintOptions
Available options:

#int %s [on—off] print the value of an
evaluated expression.
#int %s [on—off] try to wrap an assignment
around the current line.
#int %s [on—off] ask for confirmation before
redefining something.
#int %s [on—off] display timings after every
input.
#int %s [num] set the limit size of some
messages; 0 for no-limit.
#int %s ... reset command line options.
#int %s perform garbage collection.
#int %s ”<command>” execute a shell
command.
#int %s <directory> change current directory.
#int %s [0—1—2] display backtrace when an
exception occurs.

0: never, 1: only when not caught, 2:
always.
#int %s display this message.

#quit quit the interactive loop.

ALDOR F CdFailed Could not change working directory to ‘%s’.
ALDOR F CcFailed C compile failed. Command was: %s
ALDOR F LinkFailed Linker failed. Command was: %s

ALDOR F BadFType Cannot handle file ‘%s’ of type ‘%s’. Try using
file type ‘%s’.

ALDOR F WdClobberIn Output would clobber input file ‘%s’.

277

ALDOR F WdClobberFile Output would clobber the source file ‘%s’.
ALDOR W WillObsolete The file ‘%s’ will now be out of date.
ALDOR W RemovingFile Removing file ‘%s’.
ALDOR W NotCreatingFile Cannot create file ‘%s’ from input file.
ALDOR W NoFiles No files! Type ‘%s -help’ for help.
ALDOR F NoConfig Could not find aldor.conf
ALDOR W CfgError %s

ALDOR F NoFNameProperty Fortran naming scheme field (%s) is not
specified in aldor.conf

ALDOR F BadFNameValue Unrecognised Fortran naming scheme (%s)
specified in aldor.conf

ALDOR F NoFCmplxProperty Fortran complex functions field (%s) is not
specified in aldor.conf

ALDOR F BadFCmplxValue Unrecognised Fortran complex functions field
value (%s) specified in aldor.conf

ALDOR M BreakEnter Aldor compiler break
——————————————————

ALDOR M BreakExit ————————————————————
——————

ALDOR M BreakNoMsg No message.
ALDOR M BreakNoCmd Unrecognized command: ‘%s’.
ALDOR M BreakMsgPrompt :::
ALDOR M BreakMsgHelpAvail Help is available.
ALDOR M BreakMsgBadNode Bad node.
ALDOR M BreakMsgNoNode No node.
ALDOR M BreakMsgNoStab No symbol table.
ALDOR M BreakMsgNoTypeInfo No type info yet.
ALDOR M BreakMsgAtTop At top.
ALDOR M BreakMsgAtLeaf At leaf.
ALDOR M BreakMsgNoPrev No prev.
ALDOR M BreakMsgNoNext No next.
ALDOR M BreakMsgCantSelect No such selection.
ALDOR M BreakMsgNTypes The expression has %d possible types.
ALDOR M BreakMsg1Type The expression has the unique type:
ALDOR M BreakMsgUsedContext Used in ‘%s’ context.
ALDOR M BreakMsgNotId Can only ask for meanings of an identifier.

278 · Compiler messages

ALDOR M BreakHelp Commands are:
help – give this help
getcomsg – get information on the current

message
notes – show the notes associated with the

current message
mselect i – select message i to be the

current message
mnext – select the next message in the list
mprev – select the previous message in the

list
msg – display the error message again
nice – show with pretty printed form
ugly – show with more detailed, internal

form

show – show the current node
means – show the possible meanings of the

current node
use – show how the current node is used
seman – show the extra semantic

information for the current node
scope – show information about the current

scope

up – use the parent as the current node
down – use 0th child as the current node
next – use the next sibling as the current

node
prev – use the previous sibling as the

current node
home – return to the original node
where – returns the line and column

location of the current node

quit – exit the compiler, showing all
messages so far

ALDOR H HelpConfigOpt Configuration options:
-N file=<file> Specify name of config file.
-N sys=<name> Specify system name.

279

ALDOR H HelpCppOpt C++ generation options: Control the
behaviour of ‘-Fc++’.

-P basicfile=<bf> if the filename <bf>
(absolute filename) is provided,

the
standard basic types correspondence between
C++ and Aldor

will be
overridden.

If this
option is not provided, the compiler uses
’basic.typ’

located in
$ALDORROOT/include.

-P discrim-return Will discriminate
functions on the return type by changing

the name of
the function to ’fnname return-type’.

-P no-discrim-return Won’t discriminate
functions on the return type.

Names of
the functions will be as the original, however

the code
generated for overloaded functions on the
return

type only
won’t compile.

This option
is the default.

ALDOR H HelpProductInfo Contact infodesk@nag.co.uk for product
support and information.
Use the ALDORbug program for reporting any
bugs.

ALDOR E SigAbrt Program fault (abort process).
ALDOR E SigBus Program fault (bus error).
ALDOR E SigEmt Program fault (emulator instruction).
ALDOR E SigFpe Program fault (arithmetic exception).
ALDOR E SigHup User break (hangup).
ALDOR E SigIll Program fault (illegal instruction).
ALDOR E SigInt User break (interrupt).

ALDOR E SigPipe Program fault (write on a pipe with no one to
read it).

ALDOR E SigDanger Program fault (paging space low)
ALDOR E SigQuit User break (quit).
ALDOR E SigSegv Program fault (segmentation violation).
ALDOR E SigSys Program fault (bad argument to system call).
ALDOR E SigTerm User break (software termination signal).
ALDOR E SigTrap Program fault (trace trap).

ALDOR E SigXcpu Exceeded time limit imposed by operating
system.

ALDOR E SigXfsz Exceeded file size limit imposed by operating
system.

ALDOR E SigUnknown Unexpected signal (%d).

280 · Compiler messages

ALDOR F SxAlreadyShare Share label #nn= previously defined.
ALDOR F SxBadArgumentTo Inappropriate argument to function ‘%s’.
ALDOR F SxBadChar Illegal character 0x%x.

ALDOR F SxBadCharName Improper character name after #
.

ALDOR F SxBadComplexNum Improper complex number #C....
ALDOR F SxBadFeatureForm Improper feature form following #+ or #-.
ALDOR F SxBadPotNum Meaningless potential number ‘%s’.
ALDOR F SxBadPunct Misplaced ‘%s’.
ALDOR F SxBadToken Missing escape in token.
ALDOR F SxBadUninterned Package given with ‘#:’
ALDOR F SxCantMacroArg Macro #%c does not take a numeric argument.
ALDOR F SxCantShare Share label #nn= not previously defined.
ALDOR F SxInternNeeds Intern requires a string.
ALDOR F SxMacroIlleg Illegal macro character ‘#%c’.
ALDOR F SxMacroUndef Undefined macro character ‘#%c’.
ALDOR F SxMacroUnimp Unimplemented macro character ‘#%c’.
ALDOR F SxMustMacroArg Macro #n%c requires a numeric argument.
ALDOR F SxNReverseNeeds NReverse requires the last cdr of a list to be nil.
ALDOR F SxNumDenNeeds %s requires an integer or ratio.
ALDOR F SxPackageExists A package with the name %s already exists.
ALDOR F SxReadEOF End of file during read.
ALDOR F SxTooManyElts Number of elements greater than given size.

ALDOR F StoCantBuild Storage allocation error (can’t build internal
structure).

ALDOR F StoOutOfMemory Storage allocation error (out of memory).

ALDOR F StoUsedNonalloc Storage allocation error (using non-allocated
space).

ALDOR F StoFreeBad Storage allocation error (atempt to free
unknown space).

ALDOR F CantOpen Could not open file ‘%s’.
ALDOR F CantOpenMode Could not open file ‘%s’ with mode ‘%s’.
ALDOR F CantFindTemp Could not find unused temporary file names.
ALDOR W CantUseObject Could not use object file ‘%s’.
ALDOR W CantUseLibrary Could not use library file ‘%s’.
ALDOR W CantUseArchive Could not use archive file ‘%s’.

ALDOR W OverRideLibraryFile Current file over-rides existing library in
‘%s’.

ALDOR F Bug Compiler bug: %s.
ALDOR W Bug Internal compiler warning: %s

ALDOR F BugExportSymeNotInit Compiler bug: I am trying to create a slot for
the export ‘%s:%s’. However,
gen0SymeSetInit() has not been used to
initialise it so I can not continue (sorry).

ALDOR I PreRelease This is a pre-release of %s. ‘aldor -h info’ for
more details.

281

ALDOR I DemoExpiry This is a demo version of %s. ‘aldor -h info’ for
information.
This program should not be used after %s

ALDOR S Syme Label label
ALDOR S Syme Param parameter”
ALDOR S Syme LexVar lexical variable
ALDOR S Syme LexConst lexical constant
ALDOR S Syme Import import
ALDOR S Syme Export export
ALDOR S Syme Extend extend
ALDOR S Syme Library library
ALDOR S Syme Archive archive
ALDOR S Syme Builtin builtin
ALDOR S Syme Foreign foreign
ALDOR S Syme Fluid fluid variable
ALDOR S Syme Trigger trigger
ALDOR S Syme Temp temporary

282 · Compiler messages

Index

$ (qualifier), 101
% (percent sign), 86
, (comma), 43, 107
->, 138
:*, 108
:, 108
:= keyword, 11, 100, 103
== keyword, 10, 100
==> keyword, 10, 133
=> (exit expression), 45
@ (restriction), 101
(size of a finite domain), 94
(system command), 25
+—hyperpage, 28
—hyperpage, 28
—hyperpage, 28

abstract datatype, 75, 84, 85, 87
actual parameter, 63, 65, 67
add keyword, 84, 105, 216
add inheritance, 88
.ai, 251
.al, 252
ALDORARGS, 254, 261
ALDORROOT, 5, 254, 261
and keyword, 48
anonymous function, 67
.ao, 252
applications, 107
archive files, 252
Arr, 149
.as, 251

#assert, 239
assignment expression, 41
associativity, 33
.ap, 251
AXIOM, 3

B programming language, 74
base domain, 80
BInt, 149
Bool, 149
Boolean, 146
braces, 31
break keyword, 55, 146
Builtin, 148

C code generation, 257
C programming language, 74
C, interface with, 148

see chapter 19, 191
case operator, 48
catch, 124
Category, 13, 145
category, 75, 90

defining, 94
CC, 257, 261
CGO, 257, 261
Char, 149
closure, 23, 67, 104, 212
coerce, 82
collect expressions, 58
comment, 28
common subexpression elimination, 257
compatible, 45

Index · 283

compiler options
-Gloop, 219
see chapter 23, 251
-e, 174
-Fx, 5
-Fx, 174
-I, 194
-laldor, 194
-lfoam, 194
-lm, 194
-l (library), 175
-M, 166
-O (optimize), 5
-help, 5

conditional source inclusion, 239
constant, 40, 101
constant folding, 257
control abstraction, 50, 53
conversion function, 82
courtesy conversion, 83
Cross, 83, 139
curried function, 69

dead variable elimination, 257
debugging, 257, 260
declarations, 73
default keyword, 109
default argument, 66
define, 94
define keyword, 109
defined constant, 40
definition expression, 40
dependent function, 62
dependent type, 62, 78
description, 29
DFlo, 149
directories, 254
djgpp, 261
do keyword, 43
domain, 23, 75, 84, 210
domain inheritance, 88
domain parent, 88
dynamic scope, 110

#else, 239
else keyword, 47
#elseif, 239
Emacs, 171

empty carrier, 86
encapsulation, 88
#endif, 239
#endpile, 240
Enumeration, 139
environment, 23
environment variables, 254, 257, 261
error, 147
#error, 240
error messages

and GNU Emacs, 171
database of, 171
list of, 269
selecting display of, 170
severity of, 160

escape character, 26, 27, 39, 40
except, 124
exceptions

see chapter 11, 123
exceptions, definition of, 126
Exit, 45, 59, 60, 146
exit expression, 45
exponentiation of functions, 70
export, 84
export keyword, 110, 194
export from, 92
export to, 148
extend keyword, 118, 230

file types, 251, 254
FileName, 150
files

.al, 174

.ao, 174

.ao, 173
and -l option, 175

.as, 4
comsgdb.msg, 171
foam c.h, 193
source, 4

finally, 124
floating-point literal, 40
flow optimisation, 257
fluid keyword, 109, 110
.fm, 252
Foam, 252, 255
for keyword, 51, 100, 105, 114
Foreign, 147

284 · Index

formal parameter, 62, 65, 67
Fortran, 3, 74, 233

see chapter 20, 197
Fortran, interface with, 148
free keyword, 52, 110
from keyword, 102, 103
function, 63, 104
function - curried, 69
function - function-valued, 69
function application, 30, 63
function body, 62
function call, 42
function definition, 61, 68, 70
function expression, 42, 67, 69, 212
function name, 61
function type, 67
function types, 138
function-valued function, 69
functional programming, 69

garbage collection, 260
gcc, 261
generate keyword, 116
Generator, 146
generator function, 53
generators, 51, 114, 213
global assertions

inside a source file, 239
goto keyword, 59, 146, 233
grouping, 31

help, 253
HInt, 149

identifier, 27
#if, 239
if keyword, 47
imperative expression, 43
implementation inheritance, 88
implicit imports, 108
import keyword, 100, 102, 193, 210
importing from libraries, 176
in, 124
in keyword, 48, 51
#include, 239, 254
INCPATH, 254, 261
infix operator, 28, 30
inline keyword, 103

inlining, 257
permissions, 103

#int, 240
integer literal, 39
is, 126
iterate keyword, 56, 146

Join, 145
juxtaposition, 30

keyword argument, 64
keywords, 26

label keyword, 59, 233
lambda expression, 67
libaldor, 156
LIBPATH, 174, 254, 261
libraries, 156, 174, 254
#library, 175, 240
#libraryDir, 240
#line, 240
Lisp, 74, 148, 258

code generation, 258
Literal, 146
literal, 38
local keyword, 109
loop, 209

Machine, 148, 151
machine types, 88
MachineInteger, 150
macro keyword, 133
macros, 133, 170, 216
main entry point, 255
message limit, 258
messages, 258
missing exports, 260
multi-sorted algebra, 148
multiple values, 43, 83

returning, 211

name, 27, 37
name mangling, 258
never keyword, 60, 146
Nil, 149
not keyword, 48

object, 23

Index · 285

of keyword, 57, 116
optimisation, 227, 255
optimization, 5
or keyword, 48
overloading, 61, 65

package, 23, 75, 84
parameter, 62, 105
parameterised type, 217
parentheses, 31
peep hole optimisation, 257
per, 87
#pile, 240
piling, 34
Pointer, 150
prefix operators, 63
pretend, 82
pretend keyword, 216
primitive conversion, 82
procedural integration, 257
profiling, 257
Ptr, 149

qualifier, 101
#quit, 240

Rec, 149
Record, 140
recursion, 209, 220
Ref, 149
Rep, 87
rep, 87
repeat keyword, 50, 105, 209
representation type, 87
restriction, 101
return keyword, 62, 146
return type, 62
return value, 63
running programs, 255

samples of Aldor code, 207
select keyword, 48
self-identifying values, 74, 223
separate compilation, 173
sequence, 44
SFlo, 149
side-effects, 24
signature, 10, 90

SInt, 149
source file, 4
stdout, 208
string literal, 39
subtype, 80, 122
supertype, 80
system command, 25

test keyword, 50, 130
TextWriter, 150
then keyword, 47
throw, 125
to keyword, 57, 116
token, 25
TrailingArray, 143
try, 124
Tuple, 83, 138
Type, 138
type, 10, 13, 22
type context, 76
type conversion, 82
type satisfaction, 83

unary operators, 33
#unassert, 239
unicl, 257

see chapter 24, 263
Union, 144
unique domain, 80
Units conversion, 85

variable, 41, 103

where keyword, 105
while keyword, 50, 209
with keyword, 90, 106, 218
Word, 149

X/Open message database format, 171
XByte, 149

yield keyword, 57, 116, 146, 214

286 · Index

	I A brief overview of Aldor
	Introduction
	What is Aldor?
	Compiling and running a single file
	This guide
	Reporting problems

	Some simple programs
	Doubling integers
	Square roots
	A loop and output
	Forming a type
	Continuing ...

	II The Aldor programming language
	Language orientation
	Traditional and non-traditional aspects
	Expressions and evaluation
	Functions
	Domains
	Compilation
	Libraries

	Basic syntax
	Syntax components
	Escape character
	Keywords
	Names: identifiers and operators
	Comments and descriptions
	Application syntax
	Grouping
	Piles

	Expressions
	Names
	Literals
	Definitions
	Assignments
	Functions
	Function calls
	Imperatives
	Multiple values
	Sequences
	Exits
	If
	Select
	Logical expressions
	Loops
	Generate expressions
	Collections
	General branching
	Never

	Functions
	Function definition
	Function application
	Keyword arguments
	Default arguments
	Function expressions
	Curried functions

	Types
	Why types?
	Type expressions
	Type context
	Dependent types
	Subtypes
	Type conversion
	Type satisfaction
	Domains
	Categories

	Name spaces
	Scopes
	Constants
	Disambiguators
	Import from
	Inline from
	Variables
	Functions
	Where
	For iterators
	Add
	With
	Application
	Declarations
	Fluid variables

	Generators
	Using generators in loops
	Using generators via functions
	Creating generators

	Post facto extensions
	Extending types
	Extending functions
	Extending the base Aldor library

	Exceptions
	Introduction
	Throwing Exceptions
	Catching Exceptions
	Specifying Exceptions
	Defining Exceptions

	Generic tie-ins
	Literals
	Program-defined tests
	Generator
	Apply
	Set!
	Bracket
	Coerce

	Source macros
	Macro definition
	Macro expansion
	Examples
	Points of style

	Language-defined types
	Type
	(S1,..,Sn)->(T1,..,Tm)
	Tuple T
	Cross(T1,...,Tn)
	Enumeration(x1,...,xn)
	Record(T1,...,Tn)
	TrailingArray((U1,...,Un),(V1,...,Vm))
	Union(T1,...,Tn)
	Category
	Join(C1,...,Cn)
	Boolean
	Literal
	Generator T
	Exit
	Foreign I
	Machine
	Ref T
	Magic Types

	Standard interfaces
	The machine interface
	Standard libraries

	III The Aldor compiler
	Understanding messages
	Aldor error messages
	Example showing Aldor messages
	Some common error messages
	Common pitfalls
	Controlling compiler messages
	Interactive error investigation
	Selecting error messages
	Error messages and macros
	Error messages and GNU Emacs
	Using an alternative message database

	Separate compilation
	Multiple files
	Libraries
	Source code references to libraries
	Importing from compiled libraries

	Using Aldor interactively
	How to use the interpreter
	Directives for the interactive mode
	Using the interactive mode

	Using Aldor with C
	Using C code from Aldor
	Using Aldor code from C
	Data correspondence

	Using Aldor with Fortran-77
	Basics
	Simple Example
	Data Correspondence
	Calling Aldor Routines from Fortran
	Platform-dependent details
	Larger Examples

	IV Sample Programs
	Sample programs
	Hello
	Factorial
	Greetings
	Cycle
	Generators
	Symbol
	Stack
	Recursive structures
	Swap
	Objects
	Mandel
	Integers mod n
	Extensions
	Text input
	Quanc8

	V Reference
	Formal syntax
	Source
	Lexical structure
	Layout
	Grammar

	Command line options
	File types
	General options
	Help options
	Argument gathering options
	Directories and libraries options
	Generated file options
	Execution options
	Optimisation options
	Debug options
	C code generation options
	Lisp code generation options
	Message options
	Developer options
	Environment variables

	The unicl driver
	Compiler messages
	Index

