An Introduction to Aldor
and its Type System

Martin Dunstan

Numerical Algorithms Group (NAG Ltd)
and
Division of Computer Science
University of St. Andrews

Road Map
e What is Aldor?

e Introduction to syntax and basic concepts

— constants, variables and literals
— functions, iteration and generators

— categories and domains
e Inheritance of Categories and Domains
e Resolving overloading and extensions

e Conclusions

What is Aldor?

e Strongly-typed, imperative language with:
— two-level object model with inheritance (c.f. Haskell)
— overloading of symbol names
— types and functions are (constant) values

— generators, post facto extensions, literals etc.

e Foreign language interface:

— LISP (for AXIOM)

— C, C++, Fortran 77
e Automatic garbage collection (mark and sweep)
e Compiles to FOAM, LISP or C

Constants, Variables and Literals

+++ Pl: a well-known constant
Pl == 3.1415926535 897932385;

ThisYear == 1999;
++ The current year

+++ Who am 1?
MyName == "Martin ~ Dunstan";

-- Variables are treated likewise
fortyTwo = 42;

Simple Functions

fib == (n:Integer):Integer +->
if (n < 2) then 1
else fib(n - 1) + fib(n - 2);
}
-- More traditional definition
fib(n:Integer):Integer == {
if (n < 2) then 1;
else fib(n - 1) + fib(n - 2);
}
-- Bounded, polymorphic, curried function

Add(R:Ring)(a:R)(b:R):R == a + b;

Looping and Iteration

-- Simple conditional loop
while (i < 10) repeat doSomething(i);

-- Bounded iteration
for i in 1.10 repeat doSomething(i);

-- Unbounded iteration

for i in 1. repeat doSomething(i);
-- Combined conditional and unbounded
for 1 in 1..

while (notDone) repeat
notDone := testlt(i);

Generators (Coroutines)

primeStream == generate {
for i in 1. repeat
if (prime? i) then vyield i
}
firstPrimes(n:Z):Generato r(Z) == generate {
for prime in primeStream
for total in 1.n repeat
yield prime;
}

-- Construct a list of the first ten primes
tenPrimes = [p for p in firstPrimes 10]

Categories
e What are they?

— similar to Haskell type classes
— define the interface of domains
— values of type Cat egory
e Particular features
— write categories first, then domains
— often parameterised: Aggr egat e(T: Type)
— conditional: i f (C has Order) then

— special symbol %for domain implemented

A Simple Category

define Logic:Category == with {
BasicType;
T % -> 0p; ++ Logical complement
N o (%, %)-> %; ++ Logical ‘meet’, e.g. ‘and’
V' (%, %)-> %; ++ Logical ‘join’, e.g. ‘or
Xor: (%, %)-> %; ++ ‘Exclusive or’
default {
x%) V (y:%):% = "(Cx N 7y)

xor(x:%, Vy:%)% =X N Ty) V (x N vy)

A More Complex Category

define LinAg(S:Type):Category == Aggregate S with {
empty () -> Op;
bracket: Generator S > Op;
bracket: Tuple S -> 0p;
map . ((S,9)->S, %, %) -> %;
apply . (%, Singlelnteger)-> S;
default {
empty():% == [I;
map(f:(S,S)->S, a:%, b:%):% ==

[f(x,y) for x in a for y in b

10

Category Documentation

++ Description:

++ The category of associative rings, not

++ necessarily commutative, and not necessarily
++ with a 1. This is a combination of an abelian
++ group and a semigroup, with multiplication

++ distributing over addition.

++ Axioms:

++ X*(y+z) = xty + x*z

++ (x+y)*z = x*z + y*z

++ Conditional attributes:

++ spadnoZeroDivisors ab = 0 => a=0 or b=0

Rng():Category == Join(AbelianGroup,SemiGro up);

11

Domains
e What are they?

— collections of exported constants

— abstract data types or packages

— public view (interface) defined by category
e Particular features

— often parameterised: Znod(n: | nt eger)

— category often written with domain

— conditional definitions

12

A Simple Domain

define ZmodCat(n:Integer):Categ ory ==
if (prime? n) then Field;

Zmod(n:Integer):ZmodCat (n) == add {
Rep == Integer;

(a:%) + (b:%):% ==

per mod((rep a) + (rep b), n);
if (prime? n) then {

inv(x:%):% ==

Ring with {

13

Complex Numbers

Complex(R:Field):Field with {
* (R, %)-> %;
complex: (R, R)-> %;

real % > R;

imag % > R;
} == add {

Rep == Record(real:R, imag:R);

import from Rep;

complex(r:R, IIR):% == per [r, I];

(r:R)*(c:%):% == complex(r*real c, r<imag c);
} -- (Other exports omitted ...

14

Post facto Extensions
e What are they?

— a way of changing the behaviour of existing
domains without modifying existing code

e Benefits

— prevent explosion of domains
— incremental library development

— allow for future development

e extend Integer:DifferentialRing == add {
differentiate(n:Integer) Int eger == 0;

15

Inheritance in Aldor

e Categories
— multiple inheritance
— union of exports; disjunction of conditions
—Joi n(Cy, Cy, ..., C)=wi th {Cy; Cy;...; C,}
e Domains
— single inheritance

— representations must be consistent
— Par ent Dom add Chi | dDom

16

Binding: Resolving Overloading!

e Searching for export op in domain dom:
— two passes, first pass ignoring all defaults
— first look for op in dom
— try parent of dom (skipping defaults)
— domain dom extended (skipping defaults)
— try the defaults of dom
— try the defaults of parent

— try the defaults of domain extended

TSee the notes at end of the talk.

17

Foreign Language Interface

import {
getenv: String -> String;
puts: String -> Singlelnteger;

} from Foreign C;

export {
fib: Singleinteger -> Singlelnteger;
} to Foreign C;

import {
senddbl: (DoubleFloat -> DoubleFloat) > ()
} from Foreign Fortran;

18

Conclusions

e Compiler
— generates efficient code (comparable to C)
— FOAM provides platform independance
— variety of platforms: UNIX, VMS, PC
e Language
— ideal for computer algebra implementations
— types and functions first class
— categories permit bounded polymorphism

— generators provide general iteration

19

e Things not mentioned:

— exceptions, case statements

— default arguments for functions, records
— conversion of literals at runtime

— cross products, enumerations, records

— coerce, retract, restrict, qualify

— interactive use of compiler

20

Some Comments

After answering the questions that followed my talk two points sprang to
mind that I would like to note:

e late binding would prevent the compiler performing important opti-
misations such as inlining so we don’t do it. The compiler will bind
references to identifiers as soon as possible. This can be delayed by
using defaults in category definitions.

e the qualify “operator” (export$Domain) can be used to pin down the
domain that an export comes from. You still have to work out which
export is actually invoked if your domain is the result of extending or
inheriting from other domains. If your categories often use defaults
then life is slightly harder.

e resolving binding of exports is tricky to explain in a single slide so I'll
explain it more fully here. To look for the export op in the domain
Domwe apply the following algorithm twice: the first time defaults are
ignored, the second time they aren’t:

1. see if op is in Dom

2. see if Op is in the parent of Dom

3. see if op is in the domain that Domextended
The important point is that this is recursive: to achieve step 2 we need
to look in the parent of Dom(apply step 1), the parent of the parent of

Dom(apply step 2) and so on before we can apply step 3. As soon as an
export is found we stop.

21

